

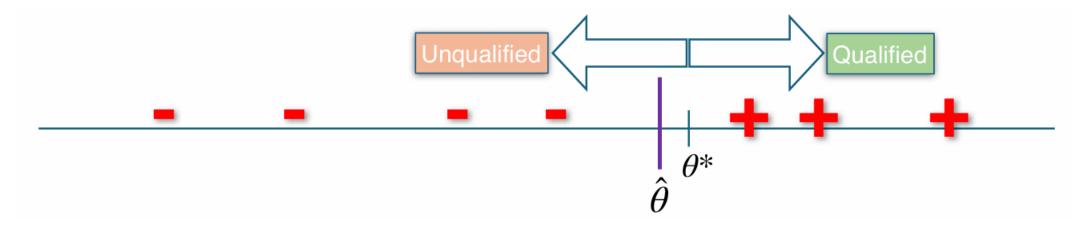
Conservative classifiers do consistently well with improving agents

Dravyansh Sharma

Alec Sun

Binary classification

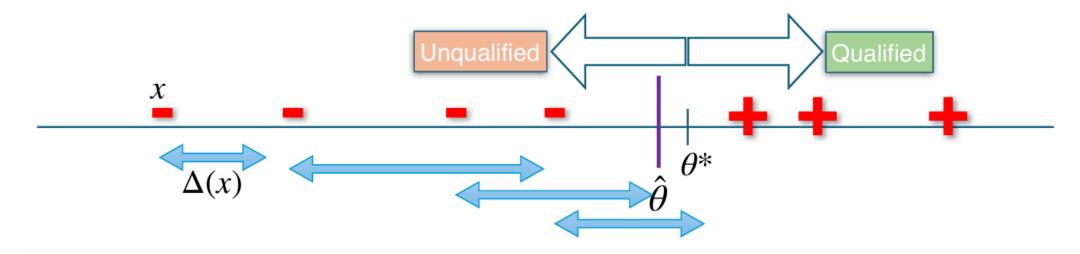
Predict whether someone is qualified for a job



- Don't know θ^* but have past data
- Publish a test cutoff $\hat{ heta}$

Learning with improvements

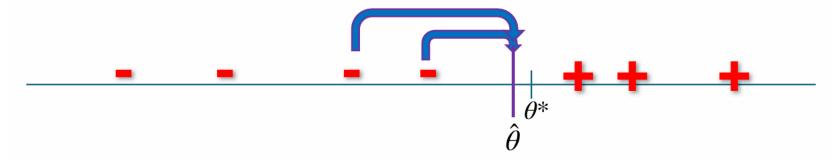
• Assumption: People put in effort to improve their qualification



- Agent x can improve in region $\Delta(x)$
- How to set $\hat{\theta}$ under improvements?

Where to set cutoff

• Cutoff too low: Agents improve to the cutoff but are not qualified



• Cutoff too high: It's fine! No false positives (everyone hired is qualified) nor false negatives (positives improve to the cutoff)

Formal model

- Ground-truth classifier f^* from hypothesis class ${\mathcal H}$
- Agent x has improvement region $\Delta(x)$
- 1. Design a classifier h and publish it
- 2. If h(x) = 0 but there is some $x' \in \Delta(x)$ for which h(x') = 1, x moves to such a x' (breaking ties arbitrarily)

Comparison with strategic classification

- Strategic classification
 - Agents manipulate their features and deceive the classifier
 - Movements are not genuine
- Learning with improvements
 - Agents genuinely improve to meet the classifier's threshold
 - Movements in the feature space are real

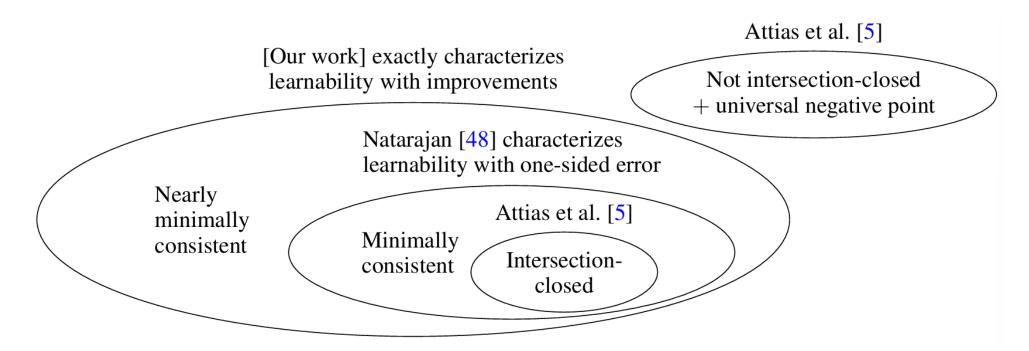
Previous work

PAC Learning with Improvements

> ¹University of Illinois at Chicago ²Toyota Technological Institute at Chicago ³Northwestern University {idan, avrim, knaggita, donya, dravy, mwalter}@ttic.edu

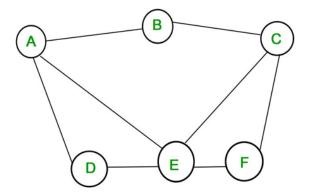
Results: proper, realizable learning

• Complete characterization of proper (published classifier must be in the hypothesis class), realizable (hypothesis class must contain the ground truth) learnability for any improvement function



Results: beyond proper, realizable learning

- Improper learning (published classifier may lie outside hypothesis class)
- Learning with label noise
- Online learning (agents are vertices on a graph and can improve to neighbors)



Results: online learning

- For both realizable and agnostic (hypothesis class may not contain the ground truth) settings:
 - New algorithm based on risk-averse majority vote
 - Nearly tight mistake bounds

	Realizable setting	Agnostic setting
Mistake upper bound	$(\Delta_G + 1) \log \mathcal{H} $	$O\left(\Delta_G \cdot (OPT + \log \mathcal{H})\right)$
Mistake lower bound	$\Delta_G - 1$	$\Delta_G \cdot OPT$

 Δ_G = Maximum degree of vertex in G

Conclusion

- Characterize statistical and online learning under improvements in many natural but challenging settings
 - Proper learning
 - Improper learning
 - Learning with noise
 - Online learning
- Moral of the story: "conservative" classifiers perform well