

FLAME: Fast Long-context Adaptive Memory for **Event-based Vision**

Biswadeep Chakraborty, Saibal Mukhopadhyay

HiPPO).

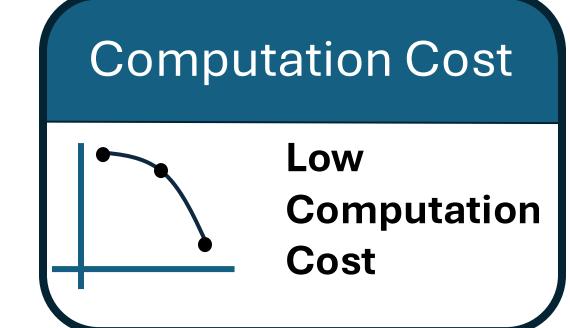
School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA

The Problem: Event based Processing of Asynchronous Sparse Data

Low Latency Requirement

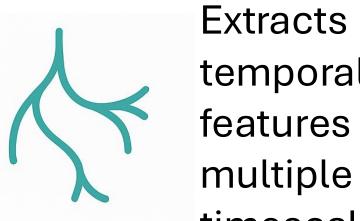
Real-time, **Event by-Event** processing





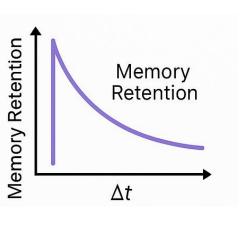
Novelty of FLAME

Multi - Timescale EAL



temporal features at timescales

Event - Aware HiPPO



Adapts memory retention based on event sparsity

Efficient SSM

Uses NPLR + FFT for fast state-space updates

Input Events

 $-\Delta t_k$

 $F_{ij}(\Delta t_k) \mid A$

for event time t_{ν}

Initialize state vector x(0)

Compute Time Difference

Update Decay Matrix

Compute EA-HiPPO Matrix

Update State

FFT based convolution

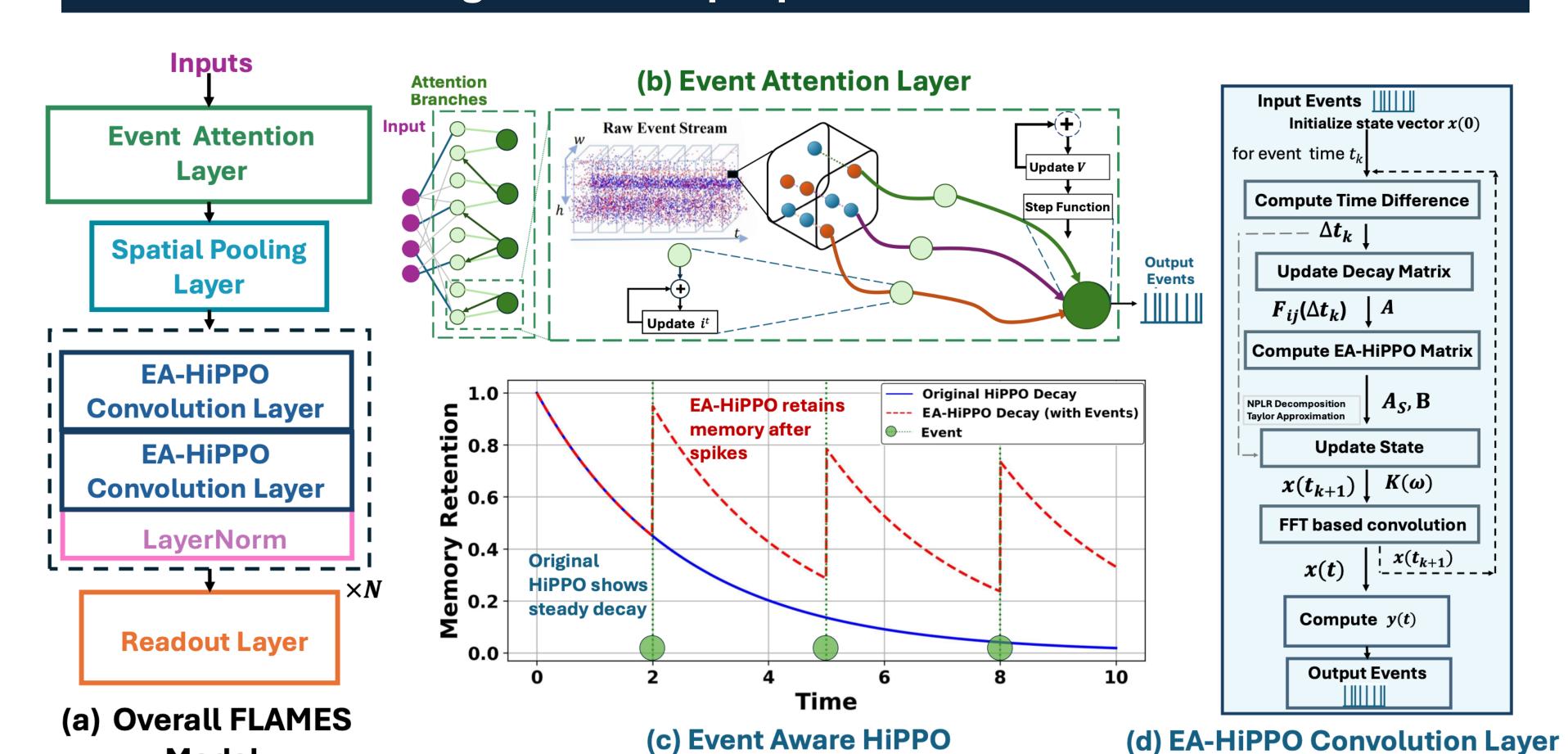
 $x(t) \mid x(t_{k+1}) \rightarrow$

 $x(t_{k+1}) \mid K(\omega)$

Compute y(t)

Output Events

Block diagram of the proposed FLAME architecture



(b) The Event Attention Layer (EAL) uses multi-branch Leaky Integrate-and-Fire (LIF) dynamics to extract (a) Overall architecture, multi-timescale temporal features from raw event combining neurostreams.

> Event-Aware HiPPO (EA-HiPPO) dynamically modulates memory retention based on event timing (Δt), retaining context better than standard HiPPO after sparse events.

(d) The EA-HiPPO Convolution Layer achieves efficiency via asynchronous updates, Normal-Plus-Low-Rank (NPLR) decomposition, and FFT-

Acknowledgement

Model

inspired feature

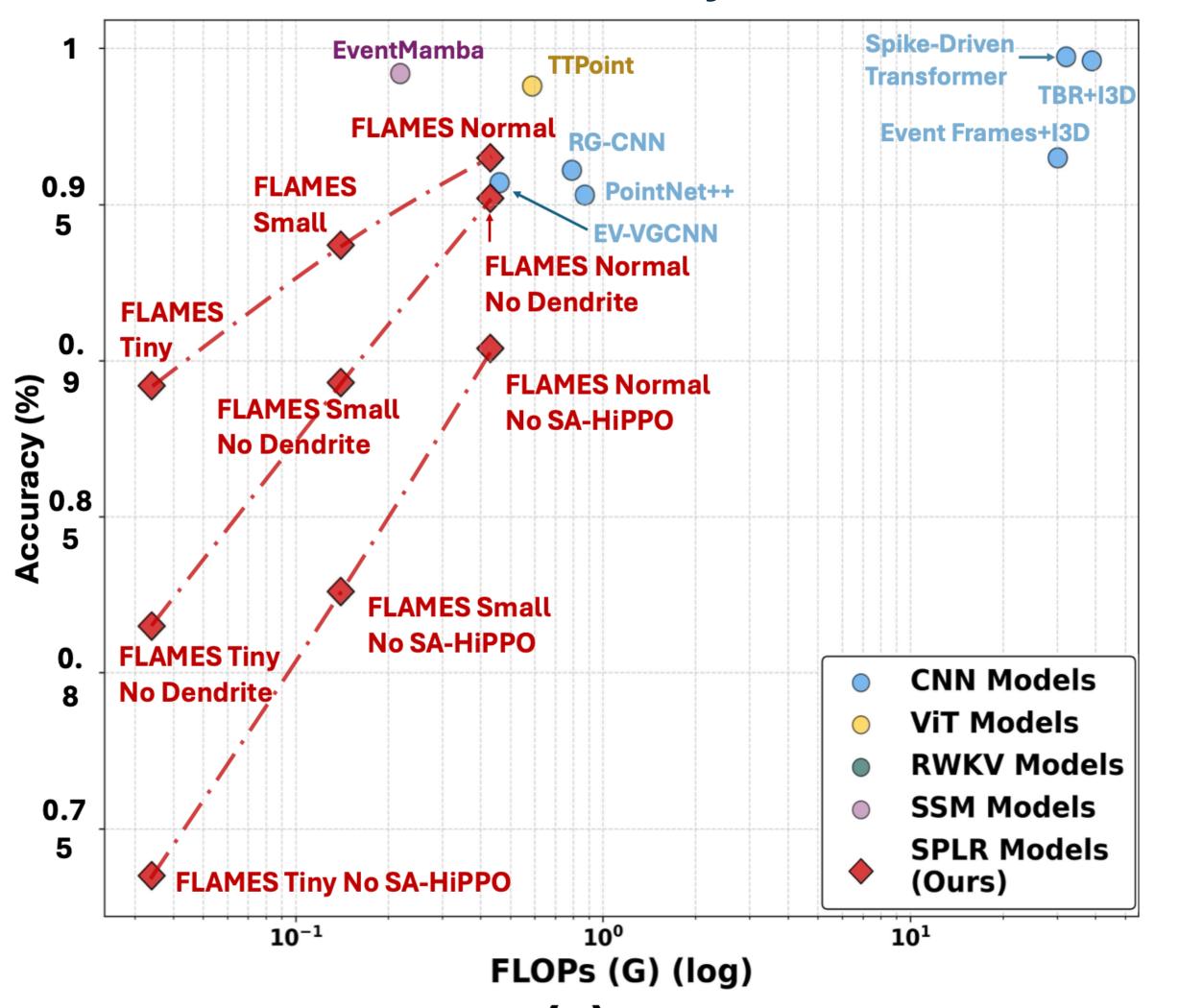
extraction with efficient

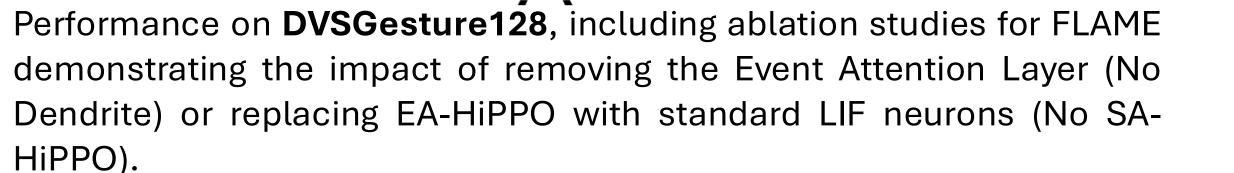
state-space modeling.

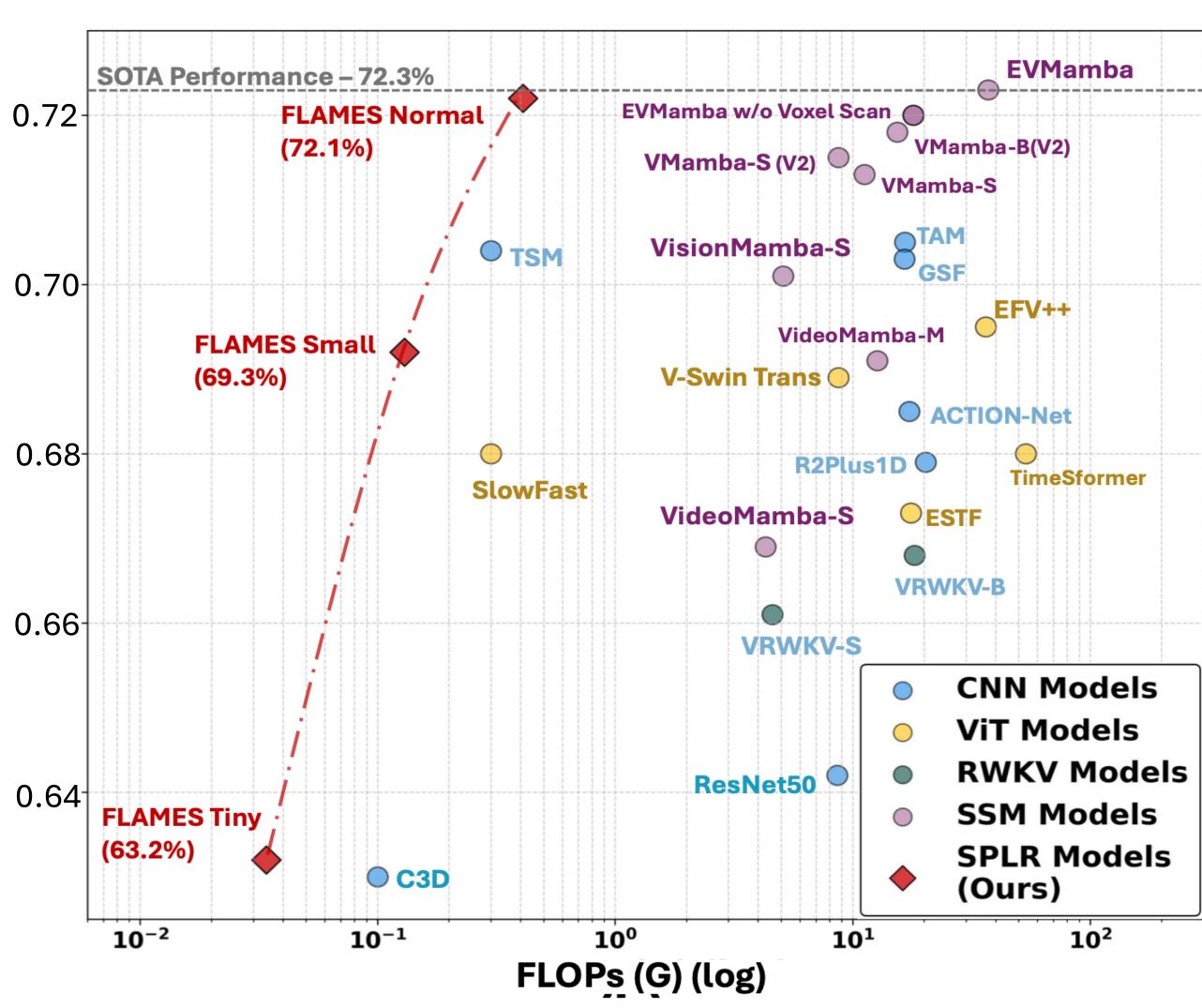
based convolution.

Comparing FLAME variants with other State-of-the-Art (SOTA) models

Accuracy versus GFLOPs across various event-based vision datasets



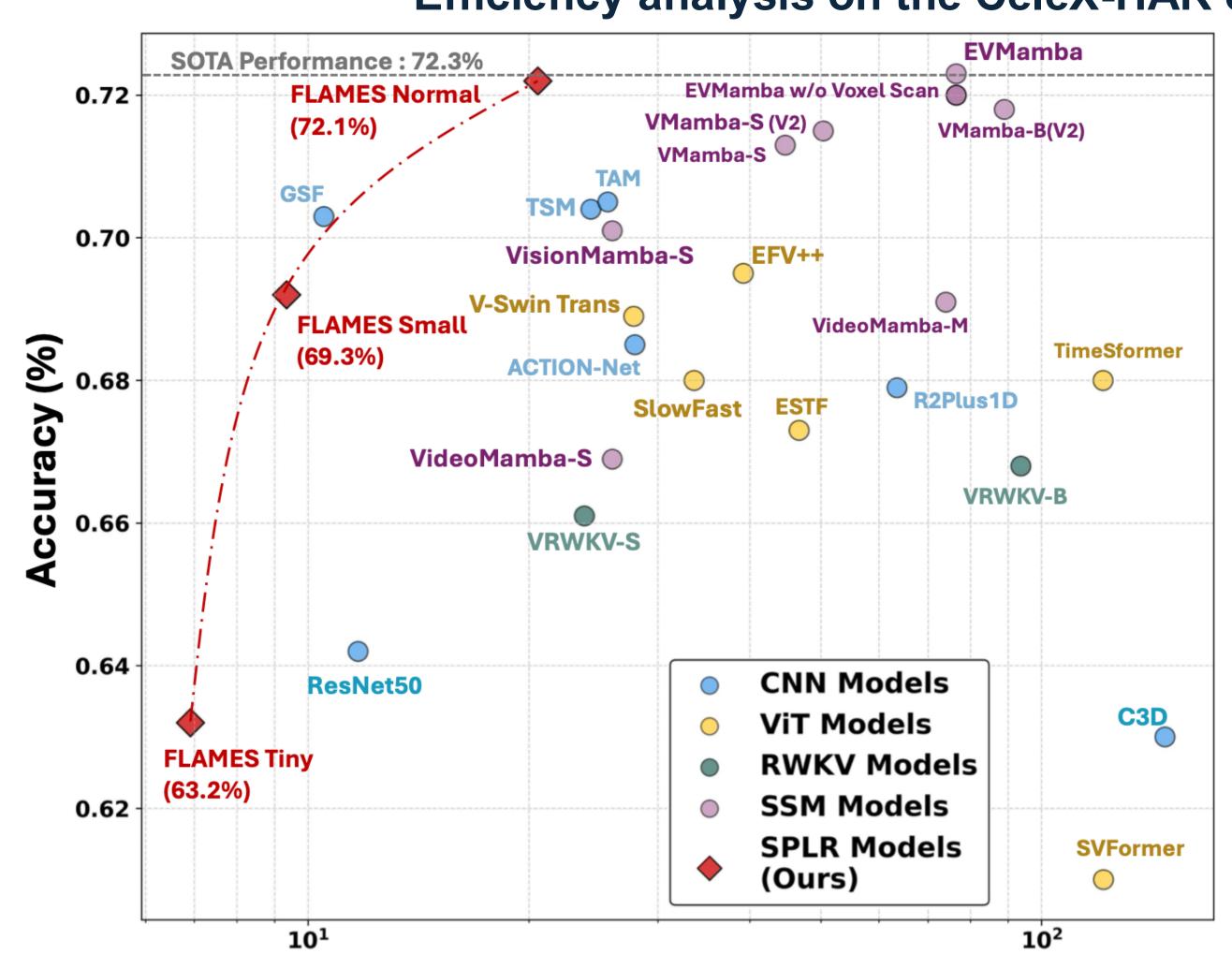




Performance on the high-resolution CeleX-HAR dataset, showcasing FLAME's efficiency at scale.

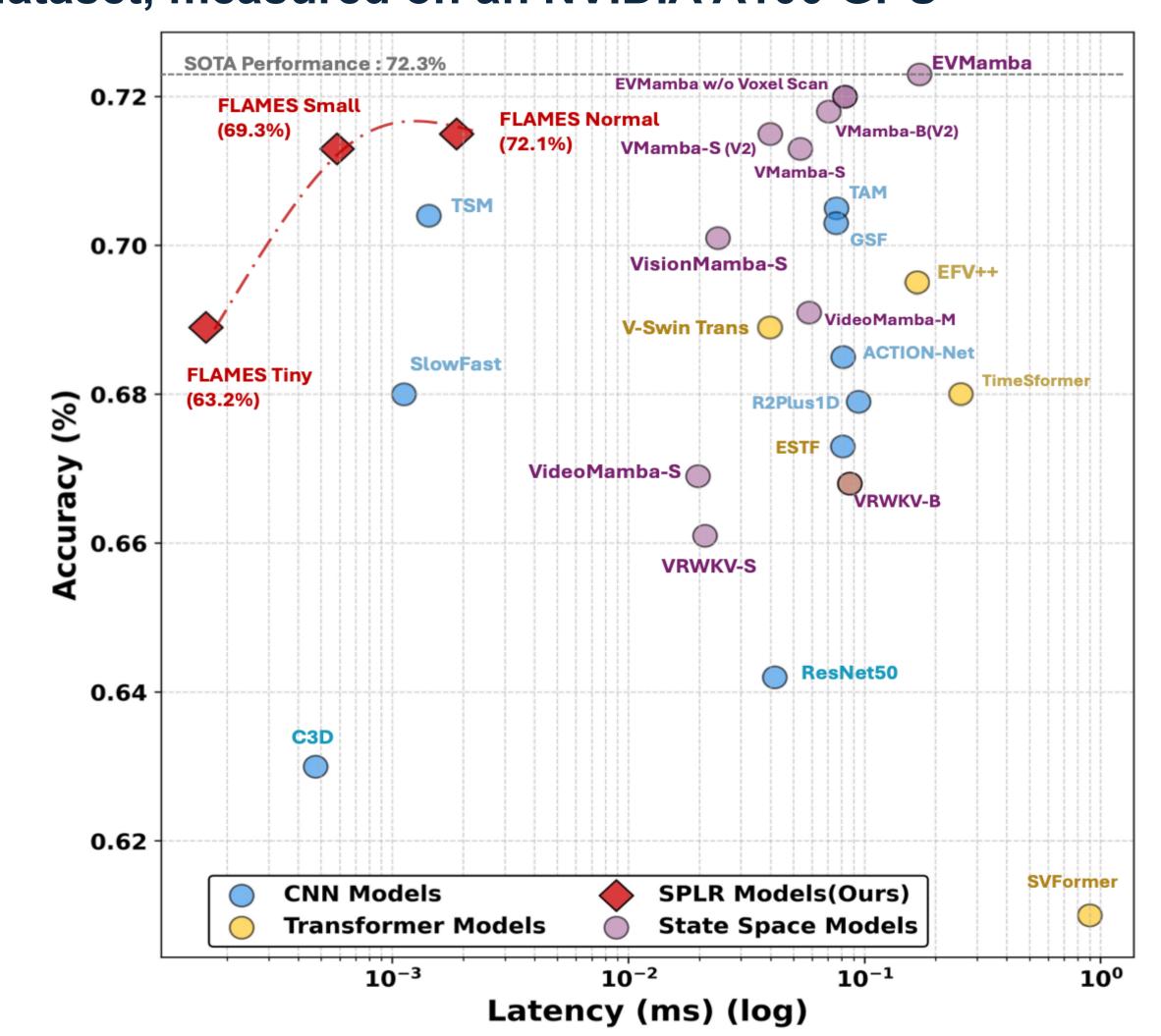
FLAME variants demonstrate a superior trade-off compared to SOTA models

Efficiency analysis on the CeleX-HAR dataset, measured on an NVIDIA A100 GPU



Accuracy versus Parameters (M): FLAME achieves competitive accuracy with significantly lower parameter counts than many high-performance models.

Parameters (M)



Accuracy versus Inference Latency (ms) (log scale): FLAME models exhibit substantially lower latency, confirming the efficiency of the asynchronous, event-by-event design for real-time applications.