

Uncertainty Quantification for Deep Regression using Contextualized Normalizing Flows

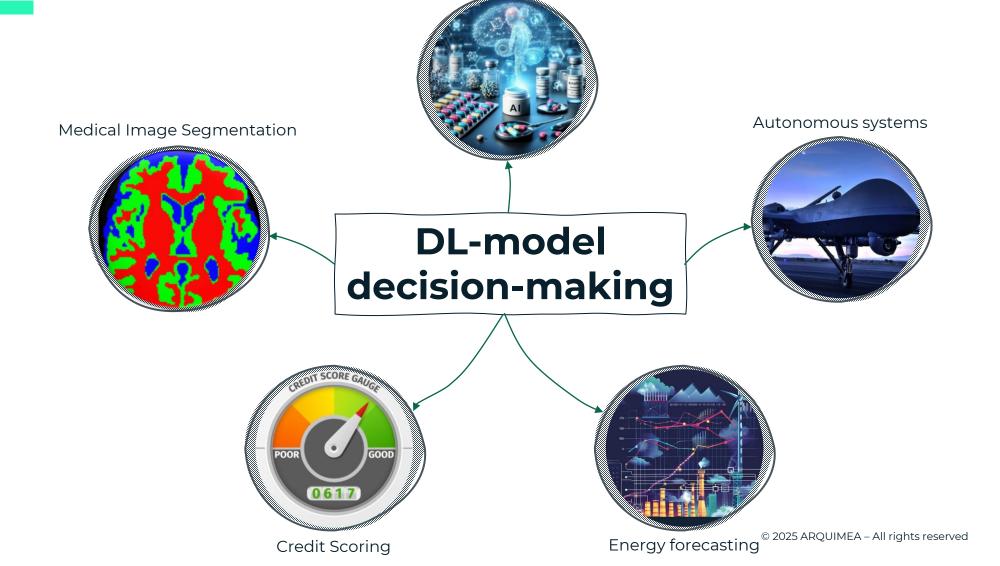
Adriel Sosa Marco[‡], John Daniel Kirwan[‡], Alexia Toumpa[§], Simos Gerasimou^{§*}

‡Arquimea Research Center, Spain

§, Department of Computer Science, University of York, UK

*Department of Elect. Eng. And Computer Science and Eng., Cyprus University of Technology, Cyprus

Problem Statement



Drug Discovery

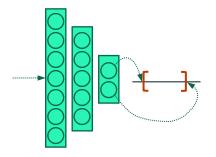
Problem Statement

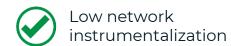


Drug Discovery

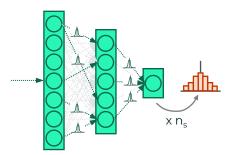
Antecedents

Quantile Regression



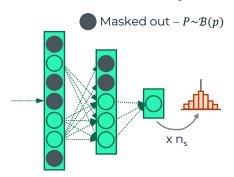


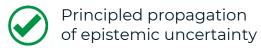
Full Bayesian Inference



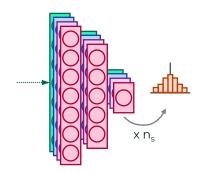


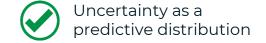
Monte Carlo Dropout



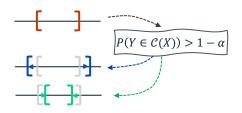


Deep Ensembles





Conformal Pred.



MCNF: Desiderata

Epistemic + Aleatoric

Characterize uncertainty using a probabilistic approach

Uses MCD to propagate epistemic uncertainty and further refine it in a second step

3 Post hoc UQ

Distribution-free

Leverage internal status of predictive model

Leverage Normalizing Flows to avoid strong distributional assumptions

1 Full predictive pdf

$$p(y|\mathbf{x}, \mathcal{D}) = \mathbb{E}_{p(y_{MCD}|\mathbf{x}, \mathcal{D})}[p(y|y_{MCD}, \mathbf{x}, \mathcal{D})]$$

1 Full predictive pdf

$$p(y|\mathbf{x}, \mathcal{D}) = \mathbb{E}_{p(y_{MCD}|\mathbf{x}, \mathcal{D})}[p(\delta|y_{MCD}, \mathbf{x}, \mathcal{D})], \delta = y - y_{MCD}$$

1 Full predictive pdf

$$p(y|\mathbf{x}, \mathcal{D}) = \mathbb{E}_{p(y_{MCD}|\mathbf{x}, \mathcal{D})}[p(\delta|y_{MCD}, \mathbf{x}, \mathcal{D})], \delta = y - y_{MCD}$$

2 Epistemic + Aleatoric

Monte Carlo Dropout: $p(y_{MCD}|x, \mathcal{D})$

- 1 Full predictive pdf
- $p(y|\mathbf{x}, \mathcal{D}) = \mathbb{E}_{p(y_{MCD}|\mathbf{x}, \mathcal{D})}[p(\delta|y_{MCD}, \mathbf{x}, \mathcal{D})], \delta = y y_{MCD}$
- 2 Epistemic + Aleatoric

Monte Carlo Dropout: $p(y_{MCD}|x, \mathcal{D})$

(3) Post hoc UQ

$$c = \{\bar{y}_{MCD}, \log s^2, h(x)\}$$

$$p(y|\mathbf{x}, \mathcal{D}) = \mathbb{E}_{p(y_{MCD}|\mathbf{x}, \mathcal{D})}[p(\delta|y_{MCD}, c, \mathcal{D})]$$

1 Full predictive pdf

$$p(y|\mathbf{x}, \mathcal{D}) = \mathbb{E}_{p(y_{MCD}|\mathbf{x}, \mathcal{D})}[p(\delta|y_{MCD}, \mathbf{x}, \mathcal{D})], \delta = y - y_{MCD}$$

2 Epistemic + Aleatoric

Monte Carlo Dropout: $p(y_{MCD}|x, \mathcal{D})$

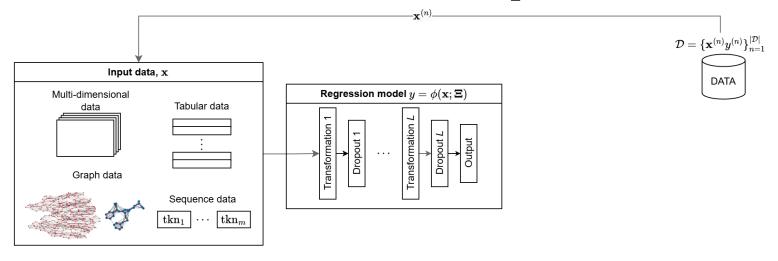
3 Post hoc UQ

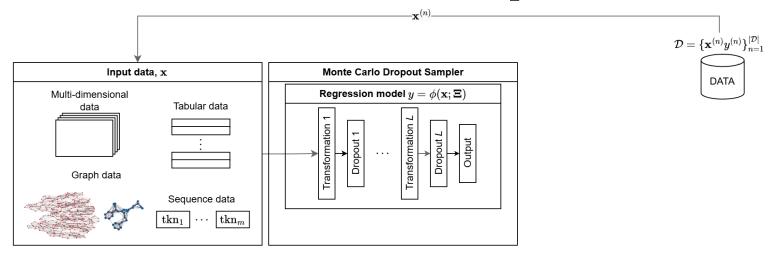
$$c = \{\bar{y}_{MCD}, \log s^2, h(x)\}$$

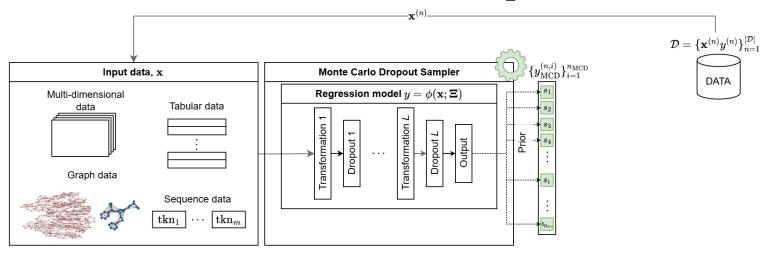
$$p(y|\mathbf{x}, \mathcal{D}) = \mathbb{E}_{p(y_{MCD}|\mathbf{x}, \mathcal{D})}[p(\delta|y_{MCD}, c, \mathcal{D})]$$

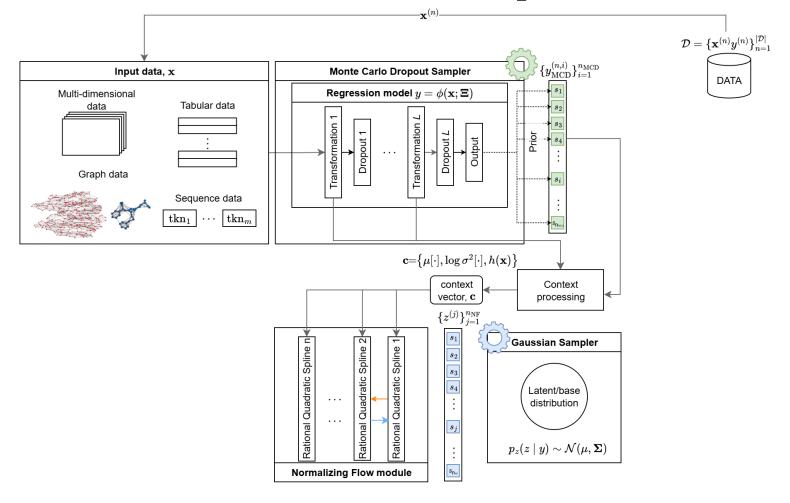
4 Distribution-free

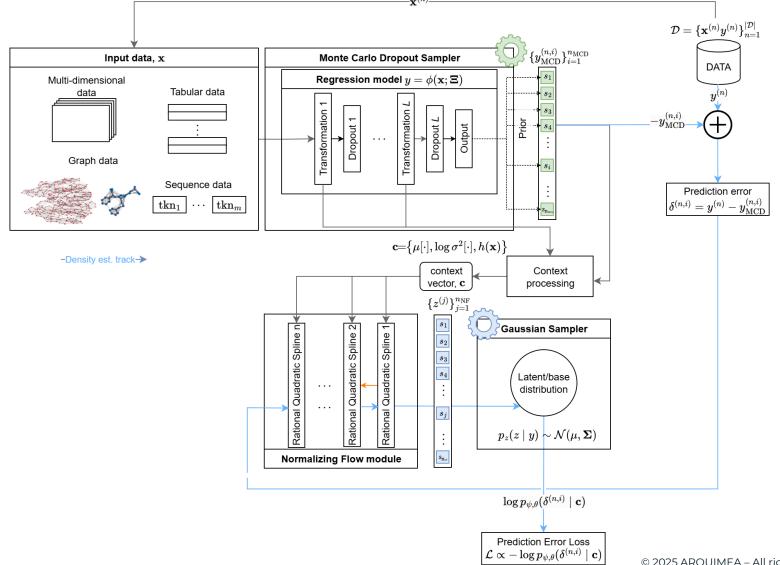
$$p(\delta|y_{MCD}, \boldsymbol{c}, \mathcal{D}) \sim p_{\boldsymbol{\psi}}(g^{-1}(\delta, \boldsymbol{c}, \boldsymbol{\theta})) \prod_{l=1}^{L} \left| \det \left(J_{g_l}(g^{-1}(\delta, \boldsymbol{c}, \boldsymbol{\theta})) \right) \right|$$

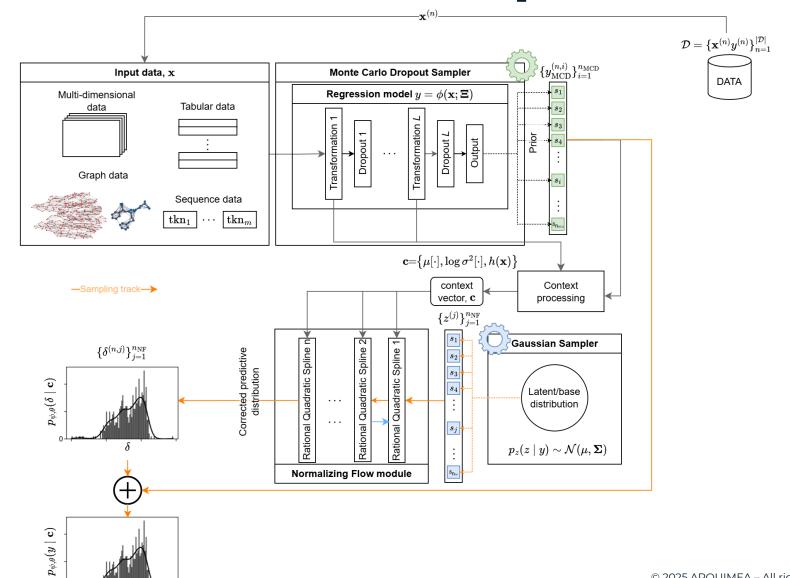












MCNF: Training Loss

Negative log-likelihood

$$\mathcal{L}_{NL}(\boldsymbol{\theta}, \boldsymbol{\psi}) = D_{KL} \left[p_{(y|\boldsymbol{x})}(y|\boldsymbol{x}) \mid\mid p_{\boldsymbol{\theta}, \boldsymbol{\psi}}(y|y_{MCD}, \boldsymbol{c}, \mathcal{D}) \right]$$

$$\approx -\frac{1}{N} \sum_{n=1}^{N} \log p_{\boldsymbol{\psi}} \left(g^{-1}(y_n, \boldsymbol{c}, \boldsymbol{\theta}) \right) + \log \left| \det \left(J_{g_l} \left(g^{-1}(y_n, \boldsymbol{c}, \boldsymbol{\theta}) \right) \right) \right| + \text{const.}$$

Weighted negative log-likelihood

$$\mathcal{L}_{NL}(\boldsymbol{\theta}, \boldsymbol{\psi}) = -\sum_{n=1}^{N} \boldsymbol{w}_{n} \left(\log p_{\boldsymbol{\psi}} \left(g^{-1}(y_{n}, \boldsymbol{c}, \boldsymbol{\theta}) \right) + \log \left| \det \left(J_{g_{l}} \left(g^{-1}(y_{n}, \boldsymbol{c}, \boldsymbol{\theta}) \right) \right) \right| \right)$$

$$\boldsymbol{w}_{n} = \sigma \left(-\frac{\log p_{MCD}(y_{n} | \boldsymbol{x}_{n})}{\tau}; \tau \right) \in (0,1)$$

UC IrvineMachine Learning
Repository

Boston Housing

Concrete

Abalone

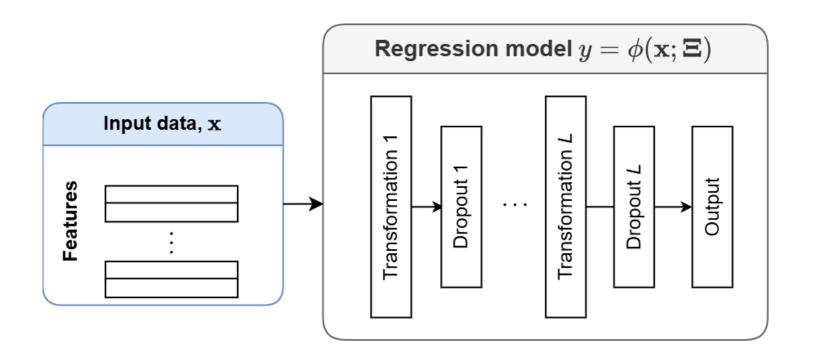
Protein

Wave Energy

Superconductor

Romano-OG

Romano-Mod



Boston Housing

Concrete

Abalone

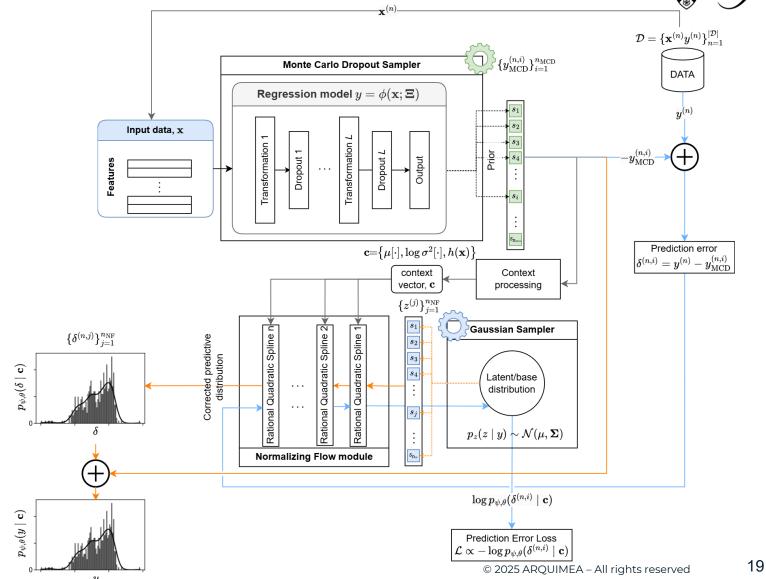
Protein

Wave Energy

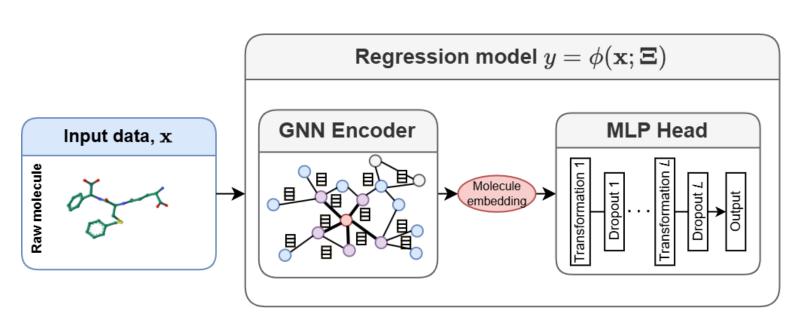
Superconductor

Romano-OG

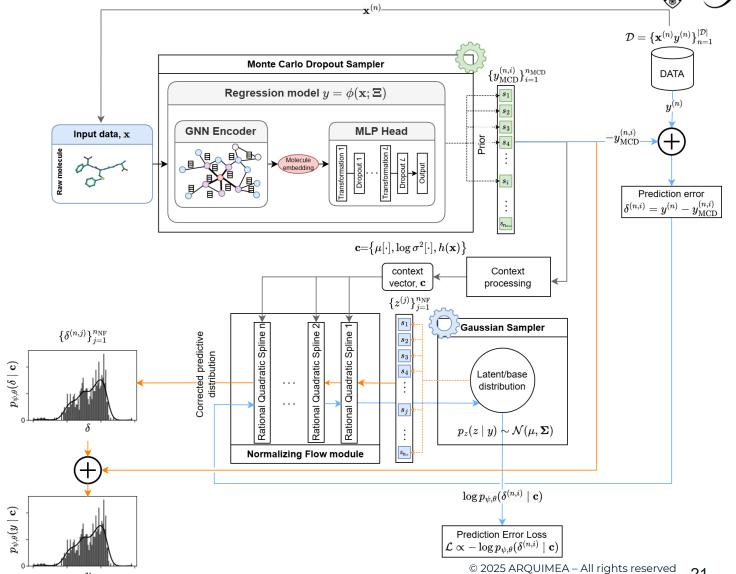
Romano-Mod



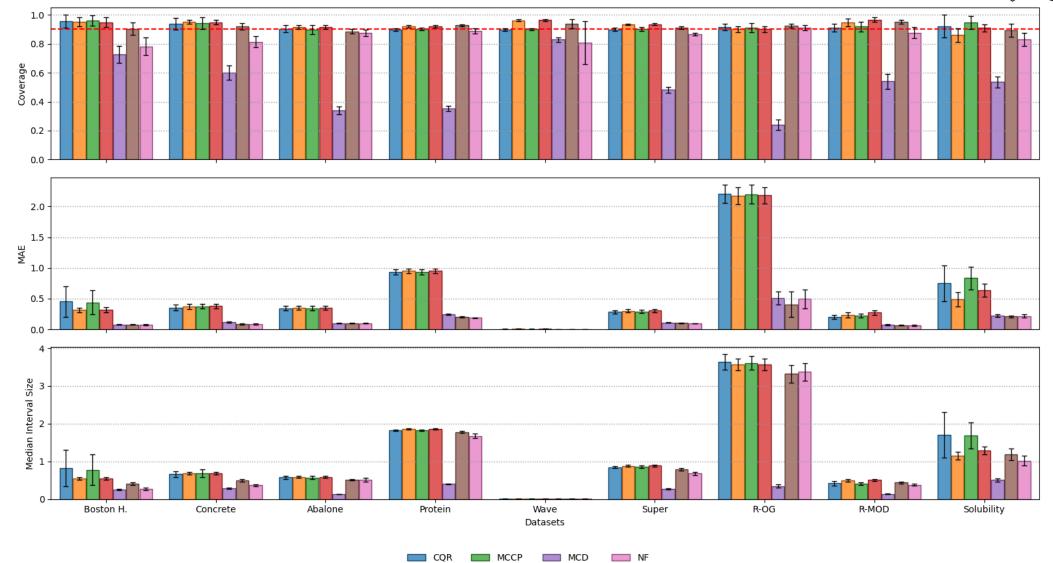
Solubility



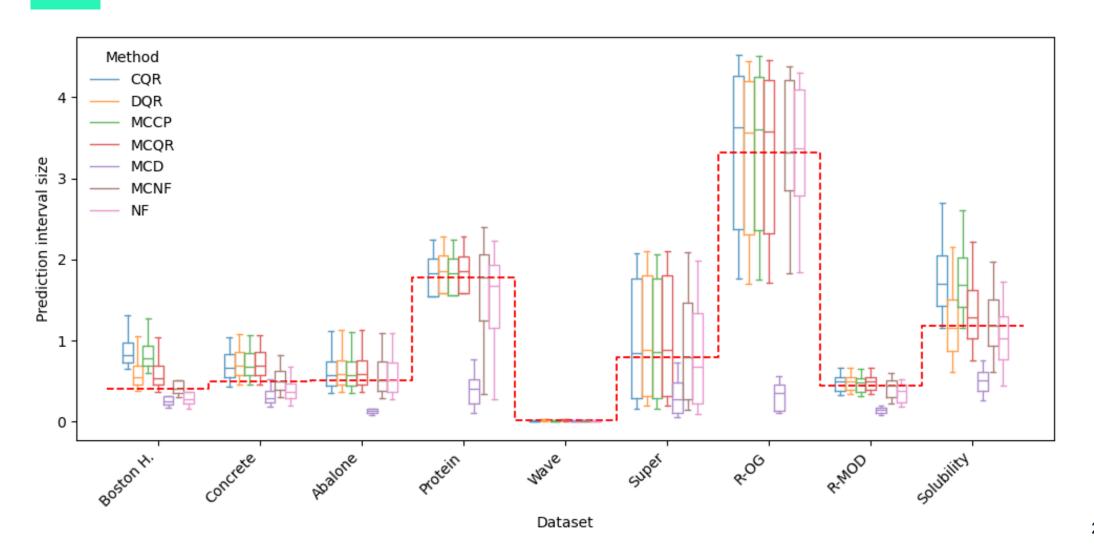
Solubility



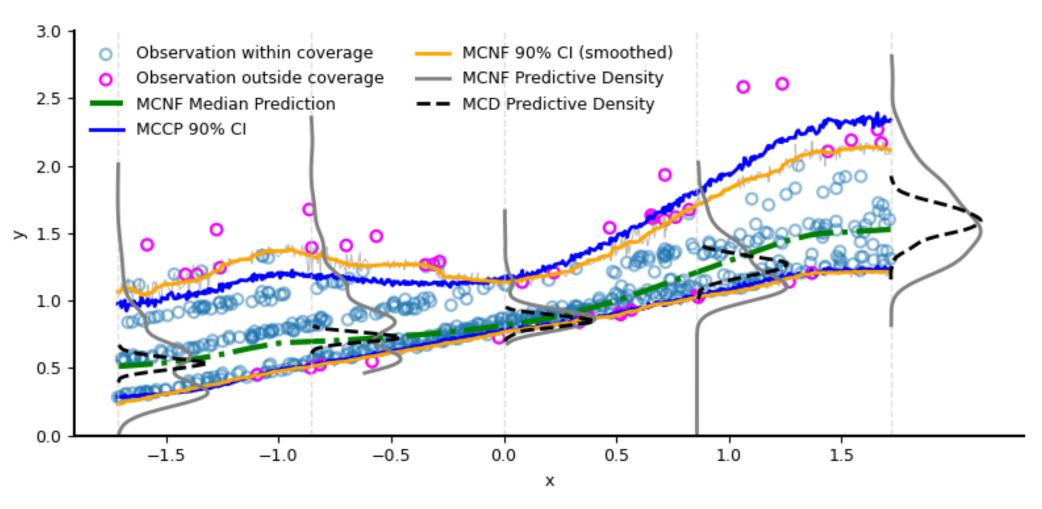
Results: Coverage, MAE, Size



Results: Adaptivity



Results: Multimodality



Conclusions and future work

MCNF is a UQ post hoc method for deep regression models

MCNF produces well-calibrated predictive intervals (coverage, size) while providing richer information than baselines

We show that the method generalizes well to other DL architectures, such as pre-trained GNNs

Future work

Extend the MCNF formalism to classification problems

Improve computational efficiency by replacing sampling-based elements of the method

