

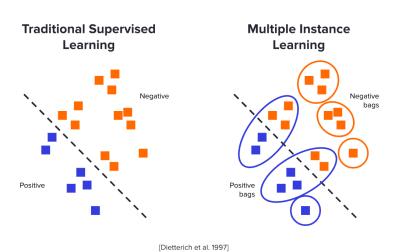
Few-Shot Learning from Gigapixel Images via Hierarchical Vision-Language Alignment and Modeling

Bryan Wong¹, Jongwoo Kim¹, Huazhu Fu², Mun Yong Yi¹
¹KAIST ²IHPC, A*STAR



Background

Whole Slide Image (WSI)

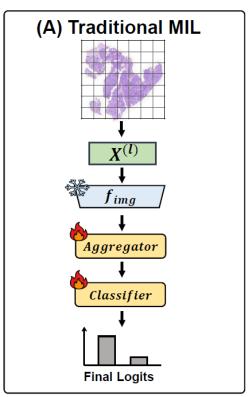

- Gigapixel size (≈100,000 X 100,000 pix)
- Hierarchical structure (5x, 20x)

Fully-supervised methods

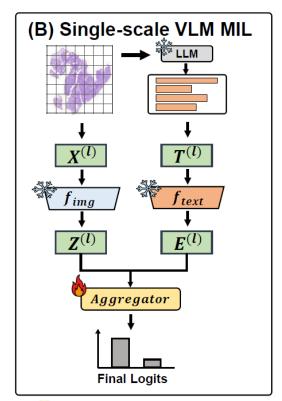
(Fine-grained annotations is expensive)

Multiple Instance Learning (MIL)

(Utilizes only WSI label)

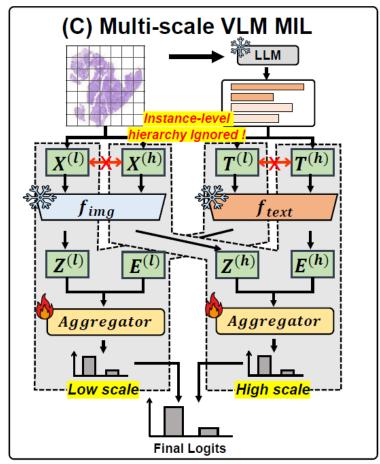


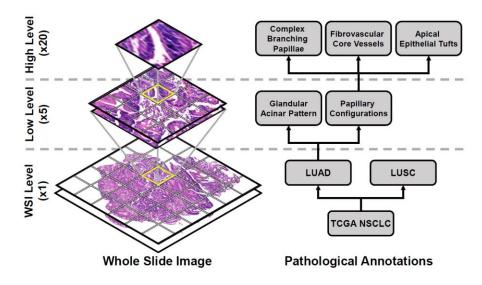

Motivation



(A) Traditional MIL

- Requires large labeled WSI datasets (privacy & rare diseases)
- Learns only from the original slides
 (staining variability & domain shifts)
- (B) Single-scale Vision-Language MIL
- Adds LLM-generated text (prior-domain knowledge for data efficiency)
- Lacks of contextual & scale awareness (ignores hierarchical structure)




Motivation

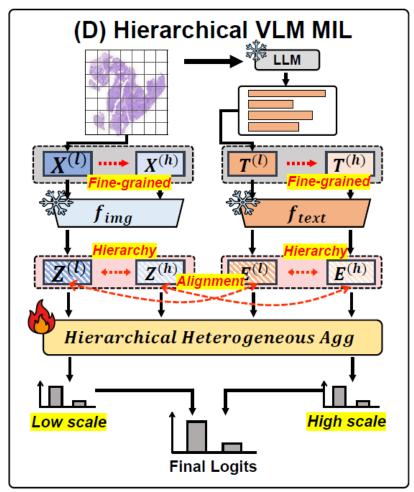
Lack of instance hierarchy and modality types

- (C) Multi-scale Vision-Language MIL
- Lacks hierarchy modeling within the same modalities (late-fusion approach)

Inadequate alignment between modalities on the same scale

How can we transfer VLM knowledge to gigapixel WSIs for better hierarchical modeling and multimodal integration?

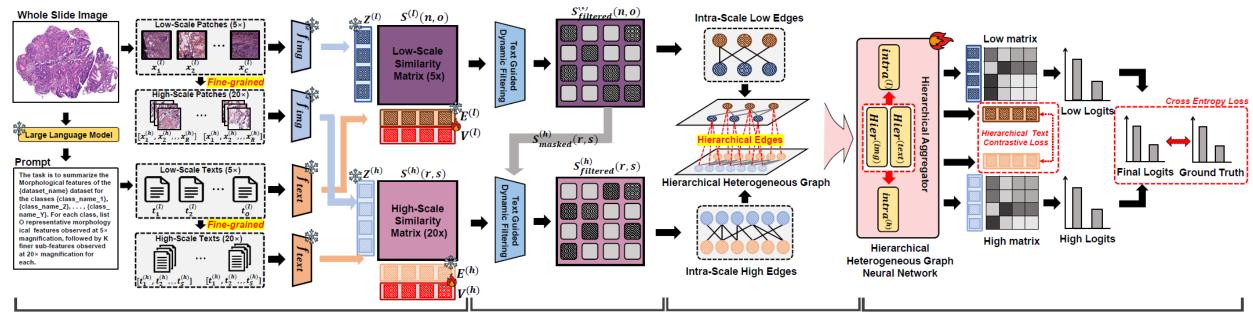
HIVE-MIL


(D) Hierarchical Vision-Language MIL (HiVE-MIL)

Cross-Scale Hierarchical Interaction

- ➤ Hierarchical Graph (builds parent-child edges between 5x and 20x visual/text nodes)
- Hierarchical Text Contrastive Loss (HTCL) (enforces semantic text consistency across scales)

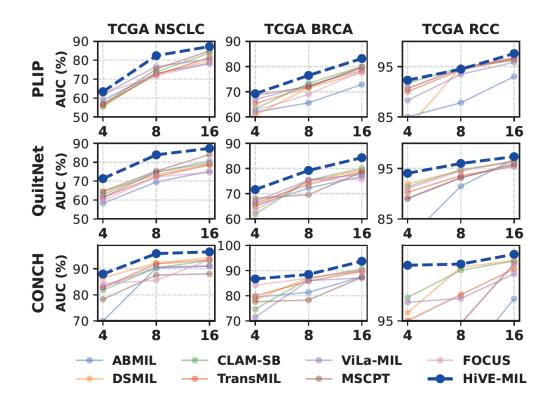
Intra-Scale Multimodal Interaction


- Heterogeneous Graph (models visual-text relations on the same scale)
- Text-Guided Dynamic Filtering (TGDF) (filters out irrelevant or weakly matched patch-text pairs)

HIVE-MIL

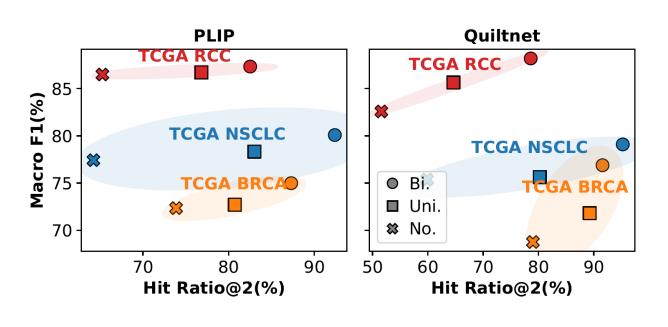
3.1 Multi-scale Hierarchical Feature Extraction

3.2 Text-Guided Dynamic Filtering 3.3 Hier-Hetero Graph Structure

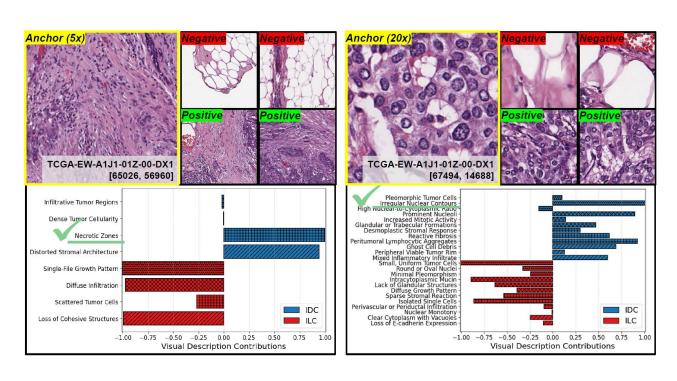

3.4 Hierarchical Heterogeneous Graph Learning

SOTA Performance

Table 1: **16-shot** results on three datasets using three pathology VLMs. The best and second-best results are highlighted in **bold** and underlined. HiVE-MIL outperforms all baselines in all settings.


	Dataset	TCGA NSCLC			TCGA BRCA			TCGA RCC		
	Model	ACC	AUC	Macro F1	ACC	AUC	Macro F1	ACC	AUC	Macro F1
PLIP [25] 208K Pathology Image-Text Pairs	Max Pooling Mean Pooling ABMIL [27] DSMIL [33] CLAM-SB [38] CLAM-MB [38]	55.00 ±3.88 61.73 ±5.65 70.64 ±2.98 72.63 ±3.88 75.96 ±2.60 73.46 ±3.15	57.33 ±4.63 65.29 ±7.55 78.44 ±3.63 79.88 ±4.60 83.79 ±3.21 82.13 ±3.41	53.96 ±4.86 61.15 ±6.16 70.37 ±3.09 72.48 ±3.96 75.94 ±2.61 73.42 ±3.13	57.29 ±3.23 65.25 ±4.40 65.83 ±5.33 71.38 ±3.20 71.75 ±3.57 72.50 ±2.92	62.33 ±2.94 70.83 ±3.93 72.87 ±7.88 77.55 ±1.62 80.00 ±2.59 78.39 ±2.95	53.68 ±6.91 64.04 ±4.42 65.29 ±5.78 71.04 ±3.40 71.49 ±3.60 72.20 ±2.87	66.82 ±6.94 79.62 ±3.51 80.00 ±3.71 86.74 ±1.23 85.98 ±1.51 86.97 ±1.03	80.58 ±6.68 92.09 ±1.92 93.01 ±1.53 96.44 ±0.63 96.22 ±0.48 96.53 ±0.78	61.38 ±8.68 76.67 ±3.49 77.95 ±3.43 84.63 ±1.51 83.35 ±1.54 84.92 ±1.03
	TransMIL [47] DTFD-MIL [54] WiKG [34] ViLa-MIL [48] MSCPT [22] FOCUS [19] HiVE-MIL	73.21 ±3.02 72.95 ±3.40 67.89 ±3.66 74.17 ±1.01 76.86 ±1.85 71.73 ±5.52 80.13 ±4.73 (+3.27)	81.44 ±2.75 79.79 ±4.65 75.54 ±4.05 80.63 ±2.37 84.93 ±1.59 78.21 ±5.93 87.28 ±2.76 (+2.35)	72.98 ±2.95 72.91 ±3.39 67.51 ±3.62 73.90 ±1.15 76.82 ±1.89 71.65 ±5.51 80.08 ±4.73 (+3.26)	72.08 ±3.32 71.25 ±2.68 67.71 ±2.19 71.04 ±6.92 72.71 ±2.90 71.66 ±5.60 75.21 ±3.51 (+2.50)	79.47 ±3.71 78.91 ±3.16 74.92 ±4.16 78.42 ±5.86 79.78 ±4.14 78.19 ±4.51 83.19 ±4.72 (+3.19)	71.94 ±3.34 70.86 ±2.76 67.15 ±2.42 70.56 ±6.98 72.58 ±2.81 71.36 ±5.69 74.99 ±3.67 (+2.41)	87.05 ±1.52 86.74 ±0.79 83.07 ±0.89 85.06 ±2.13 86.21 ±0.54 87.82 ±1.69 88.89 ±1.36 (+1.07)	96.51 ±0.56 95.94 ±0.62 94.34 ±0.76 95.53 ±0.97 95.84 ±0.45 96.73 ±0.70 97.58 ±0.41 (+0.85)	84.96 ±1.32 84.86 ±1.45 80.32 ±1.40 82.51 ±2.30 84.20 ±0.81 85.54 ±1.87 87.18 ±1.78 (+1.64)
QuiltNet [26] 1M Pathology Image-Text Pairs	Max Pooling Mean Pooling ABMIL [27] DSMIL [33] CLAM-SB [38] CLAM-MB [38] TransMIL [47] DTFD-MIL [54] WiKG-MIL [34] ViLa-MIL [48] MSCPT [22] FOCUS [19] HiVE-MIL Δ from 2nd-best	73.27 ±3.66 60.77 ±4.86 67.31 ±4.64 72.76 ±3.42 72.82 ±2.68 73.27 ±3.56 71.60 ±4.62 70.51 ±5.77 68.20 ±3.47 73.27 ±5.54 76.15 ±3.83 69.04 ±3.54 (+3.08)	75.24 ±5.97 65.68 ±6.04 75.18 ±5.13 78.99 ±3.90 79.47 ±2.93 80.53 ±3.76 77.38 ±5.26 75.08 ±4.66 80.82 ±6.41 84.06 ±3.02 74.64 ±4.29 (+3.28)	60.48 ±4.87 66.81 ±5.22 72.53 ±3.41 72.58 ±2.74 73.52 ±3.55 71.21 ±5.00 70.33 ±5.89 67.98 ±3.56 73.24 ±5.52 76.13 ±3.82 69.00 ±3.56 (+2.96)	55.83 ±4.04 65.96 ±2.32 68.96 ±4.86 72.29 ±3.64 71.46 ±3.82 72.29 ±2.43 71.67 ±3.75 72.71 ±2.02 68.75 ±3.16 72.50 ±3.93 72.08 ±5.16 68.75 ±4.42 77.08 ±3.90 (+4.37)	75.64 ±4.36 72.41 ±3.86 76.84 ±4.27 79.46 ±2.20 80.09 ±1.80 78.72 ±2.92 79.28 ±1.81 75.51 ±2.16 77.67 ±3.12 78.59 ±4.21 75.66 ±2.86 84.31 ±4.22 (+4.22)	53.75 ±4.57 64.33 ±2.27 68.42 ±5.45 72.06 ±3.54 71.24 ±4.00 72.24 ±2.47 71.56 ±3.73 72.66 ±1.99 68.59 ±3.07 72.35 ±3.92 71.82 ±5.21 68.47 ±4.70 76.80 ±4.15 (+4.14)	(88.28 ±6.77 79.62 ±3.15 88.89 ±1.71 88.89 ±1.71 88.66 ±2.17 88.74 ±1.62 86.97 ±1.83 88.66 ±1.65 83.99 ±1.70 84.60 ±1.04 87.20 ±1.90 89.12 ±1.23 89.97 ±0.85 (+0.85)	92.09 ±1.92 96.86 ±0.84 96.86 ±0.01 97.58 ±0.01 97.34 ±0.01 96.71 ±0.01 95.67 ±0.70 95.67 ±0.70 97.13 ±0.46 98.32 ±0.45 (+0.74)	61.31 ±10.73 76.67 ±3.49 87.11 ±2.44 87.11 ±2.44 87.10 ±2.98 86.83 ±2.50 85.01 ±2.65 87.06 ±1.99 81.54 ±3.14 81.42 ±1.04 85.33 ±2.41 87.43 ±1.68 88.18 ±1.25 (+0.75)
CONCH [39] 1.17M Pathology Image-Text Pairs	Max Pooling Mean Pooling ABMIL [27] DSMIL [33] CLAM-SB [38] CLAM-MB [38] TransMIL [47] DTFD-MIL [54] WiKG [34] ViLa-MIL [48] MSCPT [22] FOCUS [22] HiVE-MIL Δ from 2nd-best	78.85 ±1.78 79.55 ±2.73 84.30 ±2.22 85.83 ±2.78 85.83 ±4.25 86.92 ±3.39 85.90 ±3.36 88.40 ±3.54 82.24 ±3.13 83.08 ±3.63 80.06 ±5.20 49.39 ±1.57 (+1.99)	87.43 ±1.69 87.90 ±2.78 90.97 ±0.60 94.23 ±1.20 93.19 ±2.39 94.01 ±2.16 93.38 ±2.11 95.36 ±1.52 91.10 ±2.43 88.06 ±6.28 93.43 ±1.45 96.49 ±0.56 (+1.13)	78.82 ±1.77 79.47 ±2.74 84.28 ±2.21 85.76 ±2.84 85.80 ±4.29 85.81 ±3.36 88.37 ±3.56 82.15 ±3.21 83.04 ±3.64 79.95 ±5.24 85.90 ±4.29 90.37 ±1.58 (+2.00)	71.25 ±2.99 76.67 ±2.92 81.04 ±3.05 82.08 ±3.92 82.29 ±7.42 81.88 ±4.82 82.50 ±5.37 83.54 ±3.86 79.58 ±6.17 77.08 ±6.69 79.79 ±8.22 82.50 ±5.57 87.29 ±2.83 (+3.75)	78.46 ±4.53 86.08 ±4.43 87.50 ±5.38 89.91 ±5.46 90.70 ±6.73 90.41 ±5.14 89.69 ±4.54 91.22 ±3.39 87.42 ±6.54 87.03 ±8.01 87.33 ±6.78 93.86 ±6.89 (+2.64)	70.91 ±3.14 76.47 ±2.81 80.93 ±3.04 81.99 ±3.89 82.24 ±7.41 82.38 ±5.36 83.48 ±3.83 79.44 ±6.39 76.98 ±6.73 79.69 ±8.21 82.20 ±5.77 87.24 ±2.85 (+3.76)	80.15 ±4.86 87.74 ±0.69 88.43 ±1.95 91.95 ±1.95 91.42 ±1.13 89.27 ±2.34 91.65 ±1.44 89.73 ±2.37 89.27 ±2.32 92.03 ±1.52 91.57 ±1.14 92.34 ±1.33 (+0.23)	91.95 ±2.76 96.76 ±0.47 96.17 ±0.76 98.20 ±0.23 98.17 ±0.33 98.15 ±0.22 97.75 ±0.69 97.99 ±0.09 97.65 ±0.67 97.48 ±0.79 98.03 ±0.35 98.13 ±0.54 98.53 ±0.13 (+0.33)	78.11 ±4.60 86.06 ±0.46 86.95 ±2.33 90.87 ±2.00 90.76 ±0.85 89.96 ±1.11 87.66 ±2.95 90.38 ±1.52 87.84 ±3.12 87.91 ±2.88 90.89 ±1.94 90.21 ±1.37 91.32 ±1.68 (+0.43)

Hierarchical Text Semantic Alignment


Hit Ratio Evaluation

- > Step 1: Find the 2 most similar parent texts for each low-scale patch
- Step 2: Collect their child texts as candidate children
- > Step 3: Check if any high-scale patch matches a candidate child. If not, check other children under the same parent
- ➤ Step 4: Record a hit when both alignments (low o parent and high o child) are correct

Hit Ratio has **strong correlation** with Macro F1 (bidirectional message passing preserves hierarchical text consistency)

Interpretability Analysis

- ➤ Positive: patch with text distributions most similar to the Anchor → similar morphology
- ➤ Negative: patch with the most dissimilar distributions → distinct morphology

Provides interpretable evidence based on the description of the contributing text

Questions? Come visit our poster!

Thu, Dec 4 2025, 11 a.m. — 2 p.m. PST

Paper

Code

