

DiffBreak

Is Diffusion-Based Purification Robust?

Andre Kassis, Urs Hengartner & Yaoliang Yu

Website: https://github.com/andrekassis/DiffBreak

DiffBreak

Is Diffusion-Based Purification Robust? NO!!

Andre Kassis, Urs Hengartner & Yaoliang Yu

Website: https://github.com/andrekassis/DiffBreak

Diffusion-Based Purification (DBP)

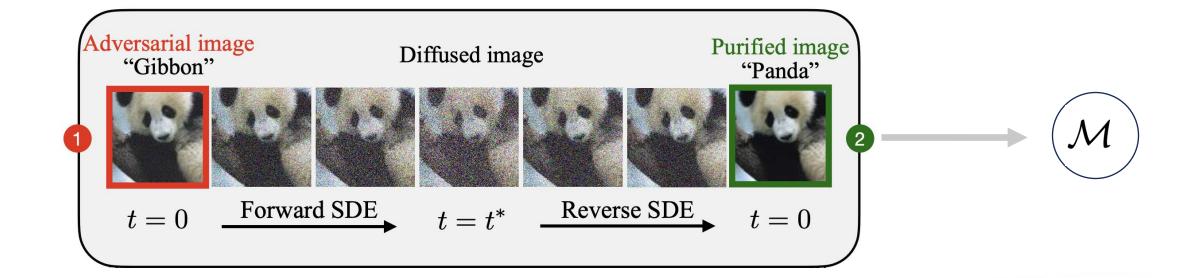
A defense against adversarial examples (AEs) that purifies AEs via diffusion models.

The only defense that remains robust to date.

Diffusion-Based Purification (DBP)

A defense against adversarial examples (AEs) that purifies AEs via diffusion models.

The only defense that remains robust to date.

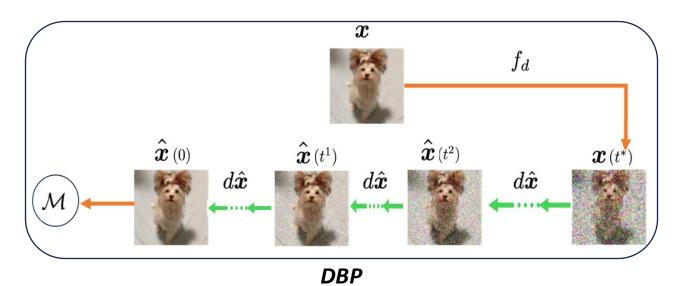


DiffBreak

A principled evaluation framework that challenges *DBP*'s robustness.

- 1) Theoretical scrutiny: exposes inherent adversarial vulnerability.
- 2) Majority-vote protocol: statistically-sound evaluation setup.
- 3) Reliable gradient module: fixes backprop issues, significantly degrading robustness.
- 4) Low-frequency attacks: structured AEs that completely break DBP.

Diffusion models learn to reverse a process that gradually turns real data in $\, m p \subseteq \mathbb{R}^d \,$ into random noise.

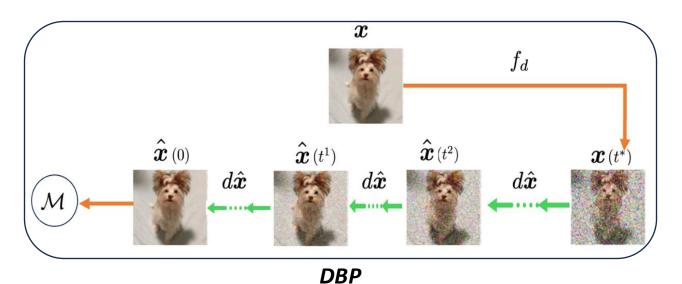


Guarantee: $\hat{x}(0) \sim p$

→ Off-manifold AEs are highly unlikely.

$$\Pr(\hat{x}(0)|x) \propto p(\hat{x}(0)) \cdot e^{-\frac{a(t^*)||\hat{x}(0)-x||_2^2}{2(1-a(t^*))}}$$

Diffusion models learn to reverse a process that gradually turns real data in $\, m p \subseteq \mathbb{R}^d \,$ into random noise.



Guarantee:
$$\hat{x}(0) \sim p$$

→ Off-manifold *AE*s are highly unlikely.

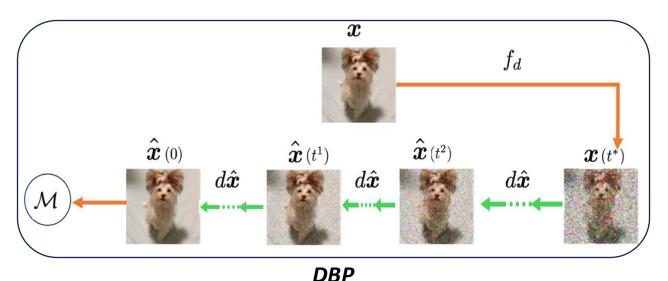
$$\Pr(\hat{x}(0)|x) \propto p(\hat{x}(0)) \cdot e^{-\frac{a(t^*)||\hat{x}(0) - x||_2^2}{2(1 - a(t^*))}}$$

Overlooked caveat: Diffusion models require a pretrained neural network S_{θ}

 $\rightarrow S_{\theta}$ is not an oracle — it's an exploitable ML algorithm

Skilled adversary:
$$\max_{\{\theta_x^t\}_{t \le t^*}} \mathbb{E}_{\widehat{x}(0) \sim DBP}^{\{\theta_x^t\}} \Pr(\neg y | \widehat{x}(\mathbf{0}))$$

Diffusion models learn to reverse a process that gradually turns real data in $p \subseteq \mathbb{R}^d$ into random noise.



Guarantee:
$$\hat{x}(0) \sim p$$

→ Off-manifold *AE*s are highly unlikely.

$$\Pr(\hat{x}(0)|x) \propto p(\hat{x}(0)) \cdot e^{-\frac{a(t^*)||\hat{x}(0) - x||_2^2}{2(1 - a(t^*))}}$$

Overlooked caveat: Diffusion models require a pretrained neural network S_{θ}

 \rightarrow S_{θ} is not an oracle — it's an exploitable ML algorithm

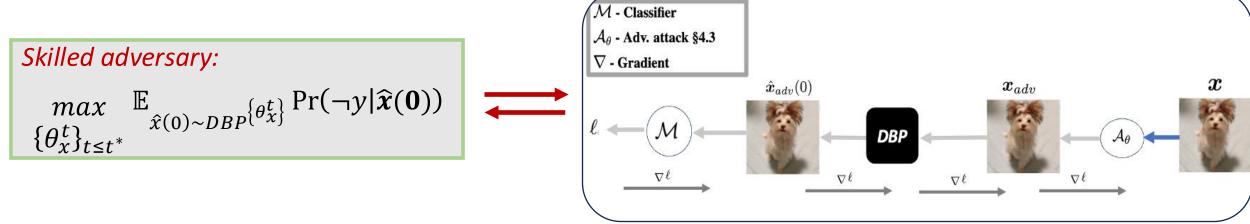
Skilled adversary:
$$\max_{\{\theta_{x}^{t}\}_{t \leq t^{*}}} \mathbb{E}_{\hat{x}(0) \sim DBP}^{\{\theta_{x}^{t}\}} \Pr(\neg y | \hat{x}(\mathbf{0}))$$

Problem: This requires the probability gradients of the different purification trajectories.

HARD TO COMPUTE DIRECTLY!

In practice:

Attackers target the classifier and propagate gradients through *DBP*.



Our key insight: The two attacks are equivalent! $\rightarrow DBP's$ robustness claims become invalid.

Our theoretical analysis proves *DBP*'s vulnerability to gradient-based attacks

→Why did previous work fail to undermine DBP's robustness?

Our theoretical analysis proves *DBP*'s vulnerability to gradient-based attacks

→Why did previous work fail to undermine DBP's robustness?

Our findings

- 1. Previous works mainly evaluated single random purification for the AE upon attack termination
 - → Ignores stochasticity and resubmission risk and overstates robustness
 - → Worst-case evaluations over N purified copies understate robustness (variance fragile)

Our theoretical analysis proves *DBP*'s vulnerability to gradient-based attacks

→Why did previous work fail to undermine DBP's robustness?

Our findings

- 1. Previous works mainly evaluated single random purification for the AE upon attack termination
 - → Ignores stochasticity and resubmission risk and overstates robustness
 - → Worst-case evaluations over N purified copies understate robustness (variance fragile)
 - 2) Majority-vote protocol 🗸

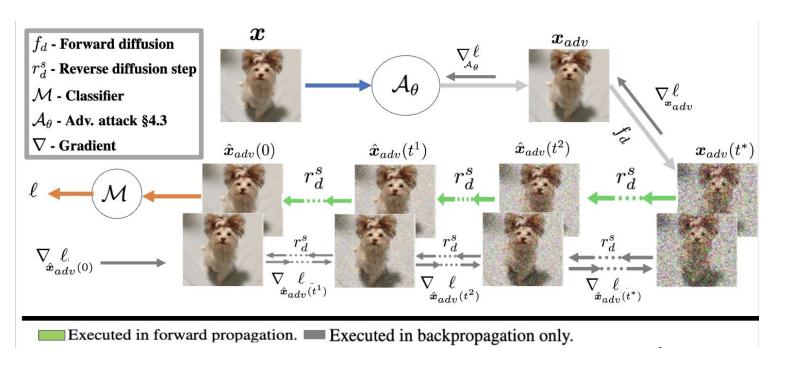
Our theoretical analysis proves *DBP*'s vulnerability to gradient-based attacks

→Why did previous work fail to undermine DBP's robustness?

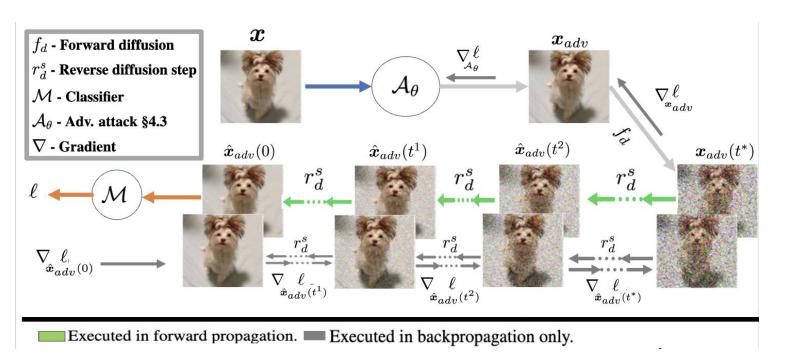
Our findings

- 1. Previous works mainly evaluated single random purification for the AE upon attack termination
 - → Ignores stochasticity and resubmission risk and overstates robustness
 - → Worst-case evaluations over N purified copies understate robustness (variance fragile)
 - 2) Majority-vote protocol 🗸
- 2. DBP's memory intensive nature requires gradient checkpointing for backpropagation
 - → Prior checkpointing implementations contained subtle issues

3) DiffGrad: A Reliable Gradient module



3) DiffGrad: A Reliable Gradient module



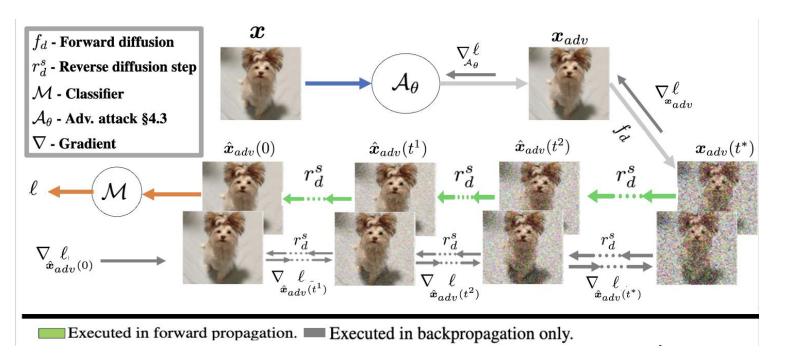
Variance Reduction <

Time Consistency

Guidance Gradients 🗸

Andre Kassis

3) DiffGrad: A Reliable Gradient module



Experimental Findings (*AutoAttack* on *CIFAR10 & ImageNet*)

DBP's robustness is drastically degraded!!

- 1. Worst-case robustness nearly vanishes with *DiffGrad*.
- 2. Majority Vote proves far superior but remains only partially robust (≤39.45).

Variance Reduction 🗸

Time Consistency

Guidance Gradients 💙

Can DBP be degraded further under Majority Vote?

Can DBP be degraded further under Majority Vote?

Traditional adversarial attacks introduce high-frequency disruptions

- → Significantly limits their magnitudes.
- → Causes them to fail against DBP's stochasticity.

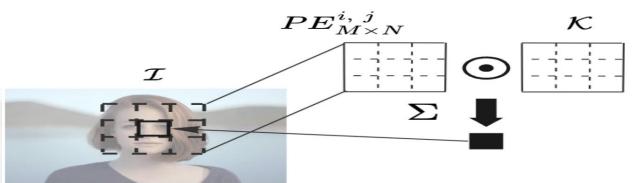
Can DBP be degraded further under Majority Vote?

Traditional adversarial attacks introduce high-frequency disruptions

- → Significantly limits their magnitudes.
- → Causes them to fail against DBP's stochasticity.

Low-frequency (LF) Attack: Chain of

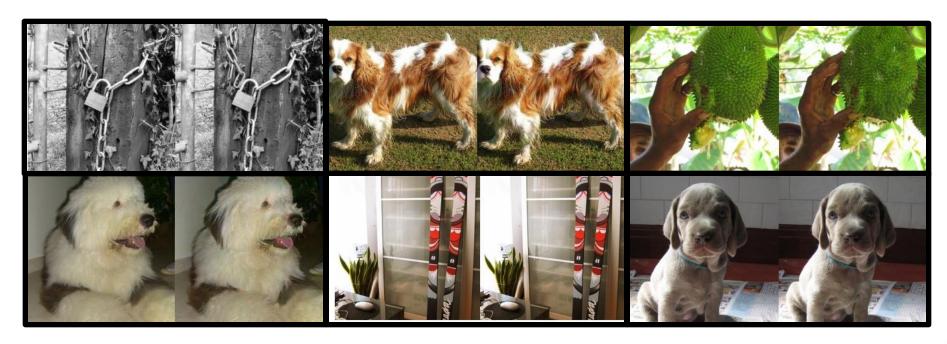
Optimizable Filters



Pur.	Dataset	Models	Cl-Acc %	Rob-Acc %
DiffPure [30]	ImageNet	ResNet-50	72.54	0.00
		WideResNet-50-2	77.02	0.00
		DeiT-S	77.34	0.00
	CIFAR-10	WideResNet-28-10	92.19	2.73
		WideResNet-70-16	92.19	3.13
GDMP [40]	ImageNet	ResNet-50	73.05	0.39
		WideResNet-50-2	71.88	0.00
		DeiT-S	75.00	0.39
	CIFAR-10	WideResNet-28-10	93.36	0.00
		WideResNet-70-16	92.19	0.39

MV robustness under LF

4) Low-Frequency Attack Samples



Right \rightarrow original sample. Left \rightarrow adversarial sample.

Insights

- ❖ Theoretical assumptions fail: *DBP*'s claimed robustness "by construction" collapses once gradient inconsistencies are resolved.
- **Evaluation variance matters:** Majority-vote testing reconciles prior over- and under-estimations of robustness.
- **♦ Low-frequency attacks prevail:** Structured *AE*s bypass *DBP*'s stochastic defenses across datasets.

Insights

- ❖ Theoretical assumptions fail: *DBP*'s claimed robustness "by construction" collapses once gradient inconsistencies are resolved.
- **Evaluation variance matters:** Majority-vote testing reconciles prior over- and under-estimations of robustness.
- **Low-frequency attacks prevail:** Structured *AE*s bypass *DBP*'s stochastic defenses across datasets.

Takeaway: Current *DBP* is *not* a viable defense against adversarial examples—highlighting the need for more powerful alternatives.

Insights

- ❖ Theoretical assumptions fail: *DBP*'s claimed robustness "by construction" collapses once gradient inconsistencies are resolved.
- **Evaluation variance matters:** Majority-vote testing reconciles prior over- and under-estimations of robustness.
- **Low-frequency attacks prevail:** Structured *AE*s bypass *DBP*'s stochastic defenses across datasets.

Takeaway: Current *DBP* is *not* a viable defense against adversarial examples—highlighting the need for more powerful alternatives.

akassis@uwaterloo.ca

andrekassis.github.io

andrekassis7

Website: https://github.com/andrekassis/DiffBreak

