

HetSyn: Versatile Timescale Integration in Spiking Neural Networks via Heterogeneous Synapses

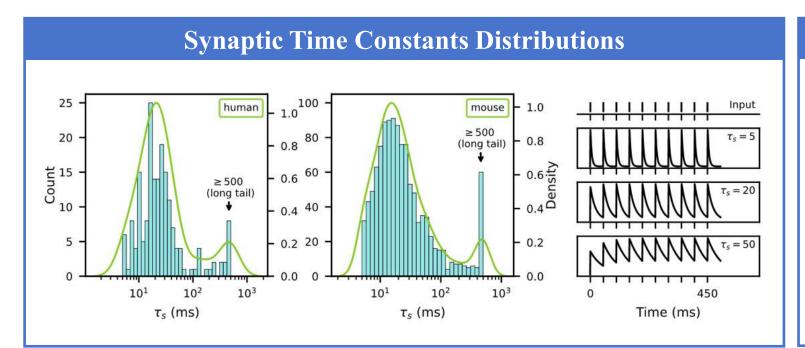
Zhichao Deng^{1*}, Zhikun Liu^{1*}, Junxue Wang^{1*}, Shengqian Chen¹, Xiang Wei¹, Qiang Yu^{1,2,3†}

¹College of Intelligence and Computing, Tianjin University, Tianjin, China
²School of Artificial Intelligence, Tianjin University, Tianjin, China
³College of Computer and Information Engineering, Tianjin Normal University, Tianjin, China

Motivations & Contributions

Motivations

- 1. Spiking Neural Networks (SNNs) offer a biologically plausible and energy-efficient computing paradigm characterized by sparse, event-driven signaling and intrinsic temporal processing capabilities.
- 2. Synaptic heterogeneity, which is widely observed across brain regions and cell types, has been largely overlooked in the design of SNNs, and its computational potential remains underexplored.



Contributions

- 1. We propose HetSyn, the first modeling framework to explicitly explore synaptic heterogeneity in SNNs.
- 2. We demonstrate that HetSyn serves as a unified and extensible framework, capable of representing a wide range of existing spiking neuron models.
- 3. We instantiate HetSyn as HetSynLIF and demonstrate its effectiveness across multiple temporal tasks.

Methods

Neural Dynamics

Vanilla LIF

$$\frac{dV}{dt} = -\frac{V - V_{\text{rest}}}{\tau_{\text{m}}} + \sum_{i,j} w_i \cdot \delta\left(t - t_i^j\right) - \vartheta \cdot \sum_j \delta\left(t - t_s^j\right)$$

$$V^{t} = \rho \cdot V^{t-1} + \sum_{i} w_{i} \cdot z_{i}^{t} - \vartheta \cdot z^{t-1} \qquad z^{t} = H(V^{t} - \vartheta)$$

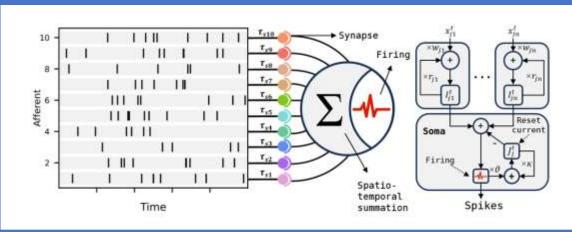
Equipped with HetSyn

HetSynLIF

$$\frac{dI_i^t}{dt} = -\frac{I_i^t}{\tau_{\mathrm{s},i}} + \sum_j w_i \cdot \delta\left(t - t_i^j\right) \qquad \frac{dJ^t}{dt} = -\frac{J^t}{\tau_J} + \sum_j \vartheta \cdot \delta\left(t - t_\mathrm{s}^j\right)$$

$$V^t = \sum_i I_i^t - J^t \qquad I_i^t = r_i \cdot I_i^{t-1} + w_i \cdot z_i^t \qquad J^t = \kappa \cdot J^{t-1} + \vartheta \cdot z^{t-1}$$

Model Structure



Generalization

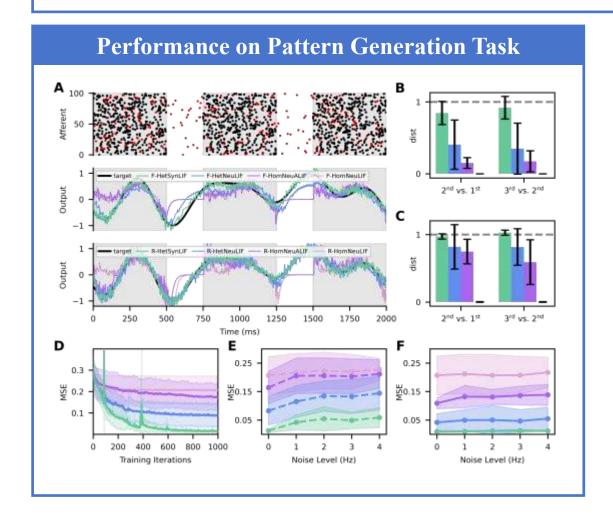
$$r_{ji} = \kappa_j = \rho \to \text{HomNeuLIF}$$

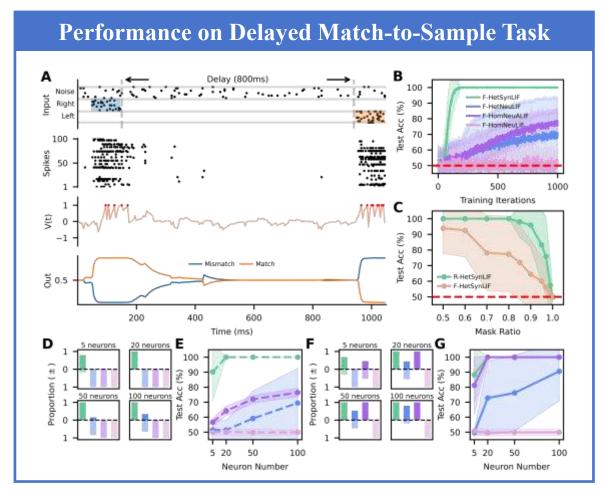
$$r_{ji} = \kappa_j =
ho \ \& \ V_j^t = \sum_i I_{ji}^t - J_{artheta}^t - J_{lpha}^t o ext{HomNeuALIF}$$

$$r_{ji} = \kappa_j = \rho_j \to \mathrm{HetNeuLIF}$$

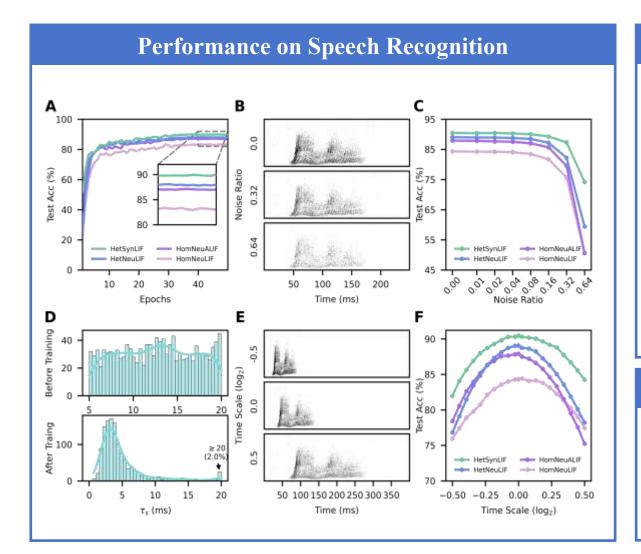
Experiments

We demonstrate that HetSynLlF not only improves the performance of SNNs across a variety of tasks, but also exhibits strong robustness to noise, enhanced working memory performance, and efficiency under limited neuron resources.





Experiments & Conclusion



Accuracy Comparison on Four Datasets

Dataset	Method	Acc	Dataset	Method	Acc
SHD	DH-SFNN ^{Nat.Commun24} [23]	92.1	TiDigits	BPT-SNN[50]	98.1
	DH-SRNN ^{Nat.Commun24} [23]	91.34		M-STIPTNNLS22[51]	98.1
	SRNNICLR25 52	91.19		MPD-ALAAA119 [53]	97.5
	SRNN ^{NMI21} [54]	90.4		BAE-MPDAL[55]	97.4
	NeuHet-SRNNNatCom21 [22]	82.7		TDP-DL[56]	97.16
	SRNN ^{PNAS22} [57]	81.6		PBSNLR-DW[58]	96.5
	HetSynLIF (Ours)	92.36		HetSynLIF (Ours)	98.99
S-MNIST	DH-SRNN ^{Nat,Commun24} [23]	98.87	Ti46	RSNN[59]	96.44
	SRNN ^{NMI21} [54]	98.7		ScSr-SNNs[60]	95.9
	LSTM ^{ICML16} [61]	98.2		RSNN ^{NeurIPS19} [62]	93.5
	LSNN ^{NeurIPS18} [12]	96.4		LSM[63]	92.3
	AHP-SNN ^{NMI22} [41]	96.0		S-MLP ^{NeurIPS18} [64]	90.98
	HetSynLIF (Ours)	98.93		HetSynLIF (Ours)	96.53

Conclusion

We propose a SNN modeling framework that incorporates synaptic heterogeneity, an essential property largely overlooked in previous studies, and demonstrate its computational advantages and generalizability.

Thank You for Listening!

Full Paper

Code

E-mail

WeChat

