Metropolis Adjusted Microcanonical Hamiltonian Monte Carlo

An Unbiased, Black-Box Alternative to NUTS

Motivation

- Sampling high-dimensional, complicated posteriors is a core bottleneck in science.
- HMC/NUTS [1] are strong defaults but can struggle in very high dimensions or with tricky geometry.
- MCLMC and MCHMC [1] show excellent speed but are biased.
- **Goal:** Keep microcanonical stability and speed, remove bias, and make it black-box.

Background

Canonical dynamics (HMC):

$$\dot{\boldsymbol{x}} = \boldsymbol{u} \qquad \dot{\boldsymbol{u}} = \nabla \log p(\boldsymbol{x})$$

Microcanonical dynamics (MCHMC):

$$\dot{\boldsymbol{x}} = \boldsymbol{u}$$
 $\dot{\boldsymbol{u}} = (I - \boldsymbol{u}\boldsymbol{u}^T)\nabla \log p(\boldsymbol{x})/(d-1)$

Exact microcanonical flow preserves p(x) as the marginal distribution, making it a valid sampling strategy.

Take-aways

- Unbiased, black-box, fast.
- Simple to implement: Minimal changes from HMC.
- **Better efficiency:** Substantial gains over NUTS across diverse problems.
- Promising as a new **default sampler** for high-dimensional, gradient-based inference.

Algorithm

MAMS proposes trajectories using microcanonical dynamics and corrects with an MH step. The acceptance probability is

$$e^{-W(\boldsymbol{x}',\boldsymbol{x})} = \frac{p(\boldsymbol{x}')}{p(\boldsymbol{x})} \frac{q(\boldsymbol{x}|\boldsymbol{x}')}{q(\boldsymbol{x}'|\boldsymbol{x})}$$

where W is the total energy error of the proposal.

- In HMC, W is the Hamiltonian energy error.
- In MAMS, the same principle applies, despite the different dynamics.

Partial refresh (Langevin variant): Mixes the velocity with Gaussian noise before/after deterministic steps to reduce cycling. The MH step still depends only on the deterministic energy error.

1. Inputs

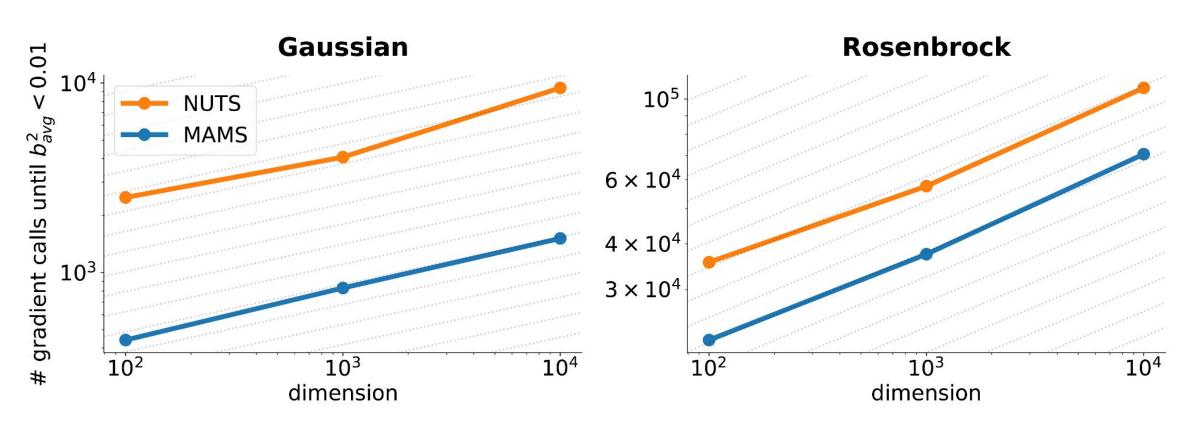
- Log-density log p(x) with gradients (or a PPL model)
- Initial point x.

2. Propose

- Sample velocity u uniformly on the unit sphere.
- o (Optional) partial refresh: lightly mix with noise, renormalize.
- Run a leapfrog-style trajectory, accumulate energy error W.

3. Accept/Reject

- Accept new state with probability min(1, e^{-W})
- Otherwise, keep the current state.


4. Automatic tuning

- Step size: dual averaging to ~90% acceptance.
- o Preconditioner: diagonal, from parameter variances.
- Trajectory length: proportional to autocorrelation length of the chain

Jakob Robnik, Reuben Cohn-Gordon, Uroš Seljak

Experiments

Scaling of sampling cost with dimension.

Number of gradient evaluations to reach low squared error vs. dimensionality. Left: standard Gaussian; right: Rosenbrock target. Both MAMS and NUTS scale as d^{1/4}, but MAMS achieves consistently fewer gradients.

NUTS	MALA	MAMS	MAMS (Langevin)	MAMS (Grid Search)
19,652	11,010	3,249	3,172	3,121
95,519	140,524	14,078	14,818	15,288
210,758	$> 10^6$	139,418	136,770	123,295
161,359	$> 10^6$	94,184	103,545	93,782
171,373	824,429	110,404	155,963	87900
29,816	597,119	13,528	15,232	14,015
88,975	$> 10^6$	55,748	49,979	52,265
76,043	249,470	45,371	56,902	45,640
843,768	$> 10^6$	430,088	510,190	431,957
$> 10^8$	$> 10^7$	2,346,899	1,765,311	1,013,048
	19,652 95,519 210,758 161,359 171,373 29,816 88,975 76,043 843,768	$\begin{array}{cccc} 19,652 & 11,010 \\ 95,519 & 140,524 \\ 210,758 & > 10^6 \\ 161,359 & > 10^6 \\ 171,373 & 824,429 \\ 29,816 & 597,119 \\ 88,975 & > 10^6 \\ 76,043 & 249,470 \\ 843,768 & > 10^6 \\ \end{array}$	19,65211,0103,24995,519140,524 14,078 210,758 $> 10^6$ 139,418161,359 $> 10^6$ 94,184 171,373824,429 110,404 29,816597,119 13,528 88,975 $> 10^6$ 55,74876,043249,470 45,371 843,768 $> 10^6$ 430,088	$19,652$ $11,010$ $3,249$ $3,172$ $95,519$ $140,524$ $14,078$ $14,818$ $210,758$ $> 10^6$ $139,418$ $136,770$ $161,359$ $> 10^6$ $94,184$ $103,545$ $171,373$ $824,429$ $110,404$ $155,963$ $29,816$ $597,119$ $13,528$ $15,232$ $88,975$ $> 10^6$ $55,748$ $49,979$ $76,043$ $249,470$ $45,371$ $56,902$ $843,768$ $> 10^6$ $430,088$ $510,190$

Gradients to low error across benchmarks (lower is better).

For each target, we report the gradient evaluations needed to reduce the worst standardized second-moment error below 0.01. MAMS (with/without partial refresh) consistently outperforms **NUTS**, often by large factors. Automatic tuning achieves nearly the same performance as grid-searched hyperparameters.

Scaling: MAMS matches HMC/NUTS scaling laws $\kappa^{1/2}$ with condition number, $d^{1/4}$ with dimension, but with a **better constant**.

Benchmarks: Across models, MAMS outperforms NUTS by factors of 2–7.

Difficult geometry (Neal's funnel): MAMS converges, while NUTS fails.

References

- [1] Matthew D. Hoffman and Andrew Gelman (2014). "The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo." In: *Journal of Machine Learning Research* 15, pp. 1593–1623.
- [2] Jakob Robnik and Uroš Seljak (2024). "Fluctuation without dissipation: Microcanonical Langevin Monte Carlo." In: Proceedings of the 6th Symposium on Advances in Approximate Bayesian Inference, pp. 111–126. PMLR. ISSN: 2640-3498.
- [3] Jakob Robnik et al. (2024). "Microcanonical Hamiltonian Monte Carlo." In: *Journal of Machine Learning Research* 24(1), 311:14696–311:14729.

