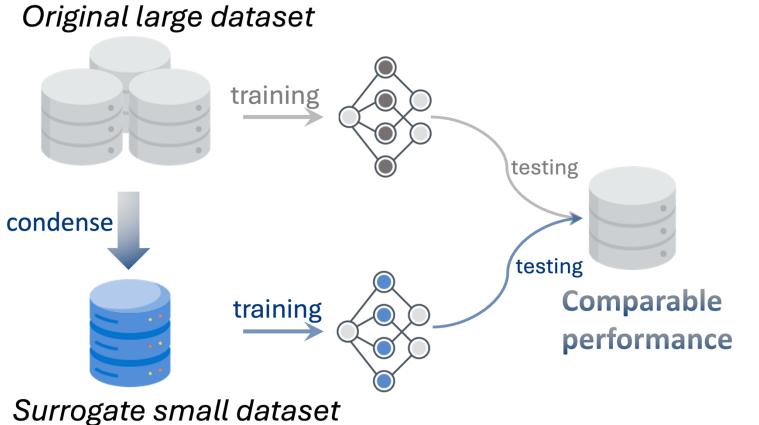
Beyond Modality Collapse: Representations Blending for **Multimodal Dataset Distillation**

Xin Zhang^{1,2}, Ziruo Zhang^{1,3}, Jiawei Du^{1,2}, Zuozhu Liu⁴, Joey Tianyi Zhou^{1,2} □

¹Centre for Frontier AI Research (CFAR), A*STAR, Singapore, ²Institute of High Performance Computing (IHPC), A*STAR, Singapore, ³National University of Singapore, Singapore, ⁴Zhejiang University, China

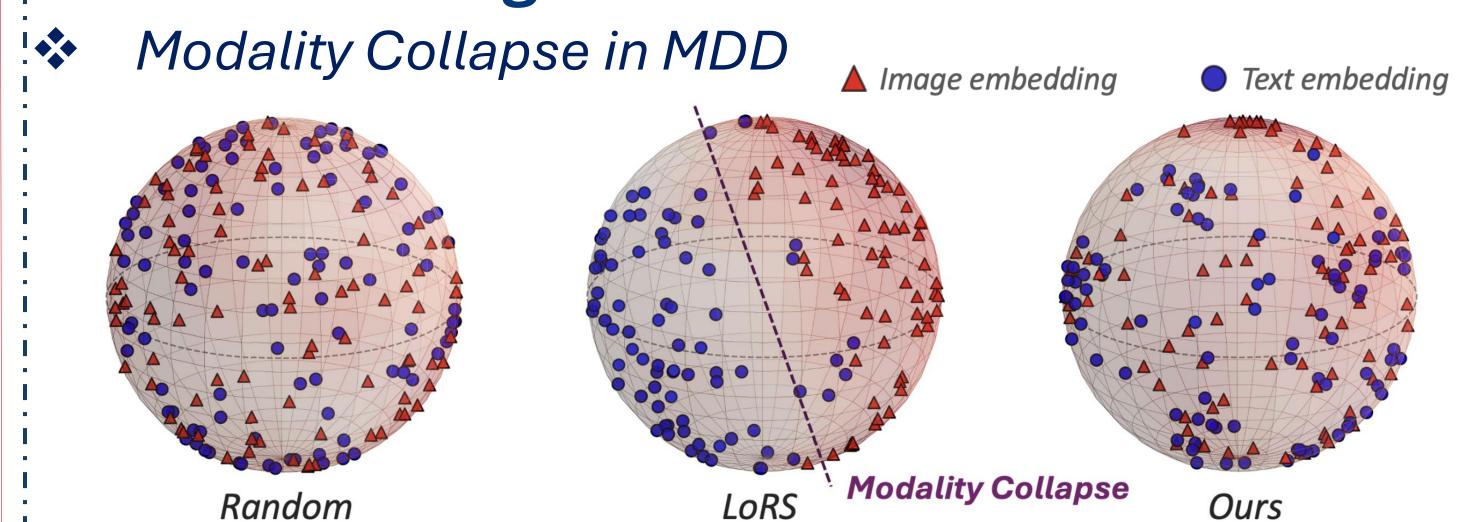
Background

What is Dataset Distillation (DD)?



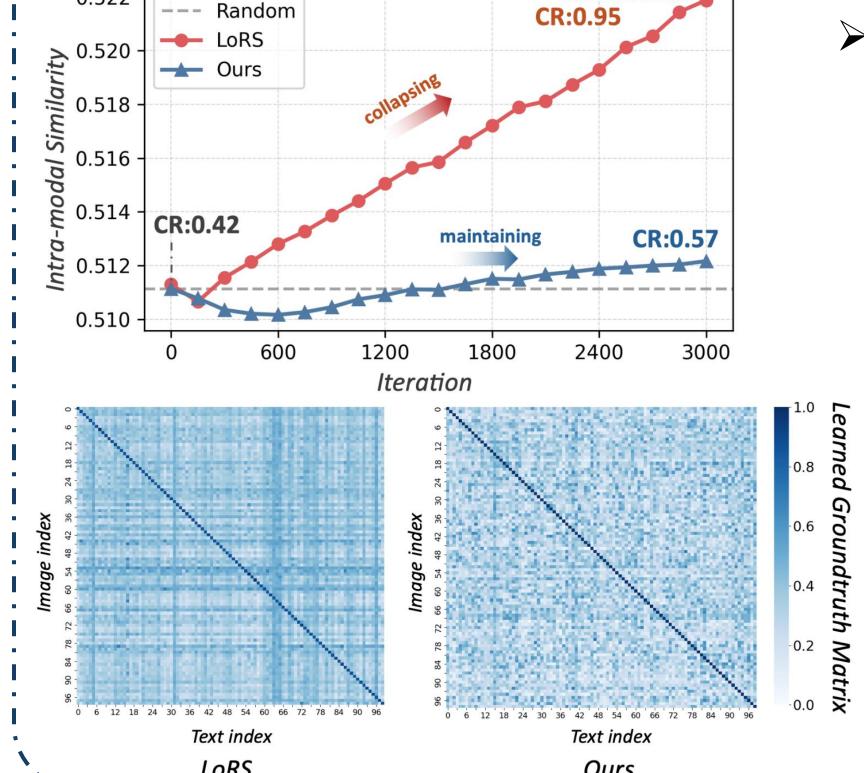
distillation synthesize a tiny and compact dataset from a given real and large dataset, such that the former can yield a comparable performance as the latter.

How do existing methods achieve MDD?



pronounced intra-modality aggregation and inter-modality separation

observable effects:



- > The intra-modal similarity consistently increases throughout the distillation process.
 - Feature centralization widens the modality gap, making nonmatching pairs indistinguishable.

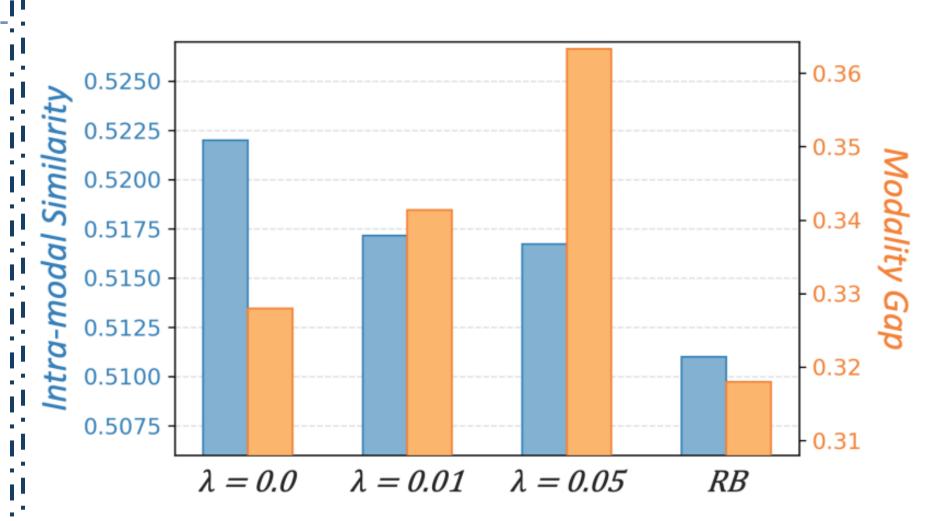
Proposed Method

Beyond Modality Collapse

underlying theoretical cause

$$\mathcal{S}^* = \arg\min_{oldsymbol{\mathcal{S}}} \underset{(oldsymbol{x},oldsymbol{ au})\sim\mathcal{P}}{\mathbb{E}} [\mathcal{L}(f_{oldsymbol{ heta}_{\mathcal{S}}}(oldsymbol{x},oldsymbol{ au}),oldsymbol{y})] \quad ext{s.t.} \quad oldsymbol{ heta}_{\mathcal{S}} = \arg\min_{oldsymbol{(ilde{x}, ilde{ au})\sim\mathcal{S}}} \mathbb{E}[\mathcal{L}(f_{oldsymbol{ heta}}(ilde{x}, ilde{ au}), ilde{y})], \ rac{\partial \mathcal{L}}{\partial ilde{x}'_n} \frac{\partial \mathcal{L}}{\partial ilde{x}'_m} \quad \longleftarrow \quad rac{w_{nm}w_{mn}}{\gamma^2} [\sigma(\hat{oldsymbol{y}}_{nm})/t - ilde{oldsymbol{y}}_{nm}][\sigma(\hat{oldsymbol{y}}_{mn})/t - ilde{oldsymbol{y}}_{mn}] ilde{ au}''_m ilde{ au}''_n$$

✓ Mitigating Modality Collapse via Representation Blending



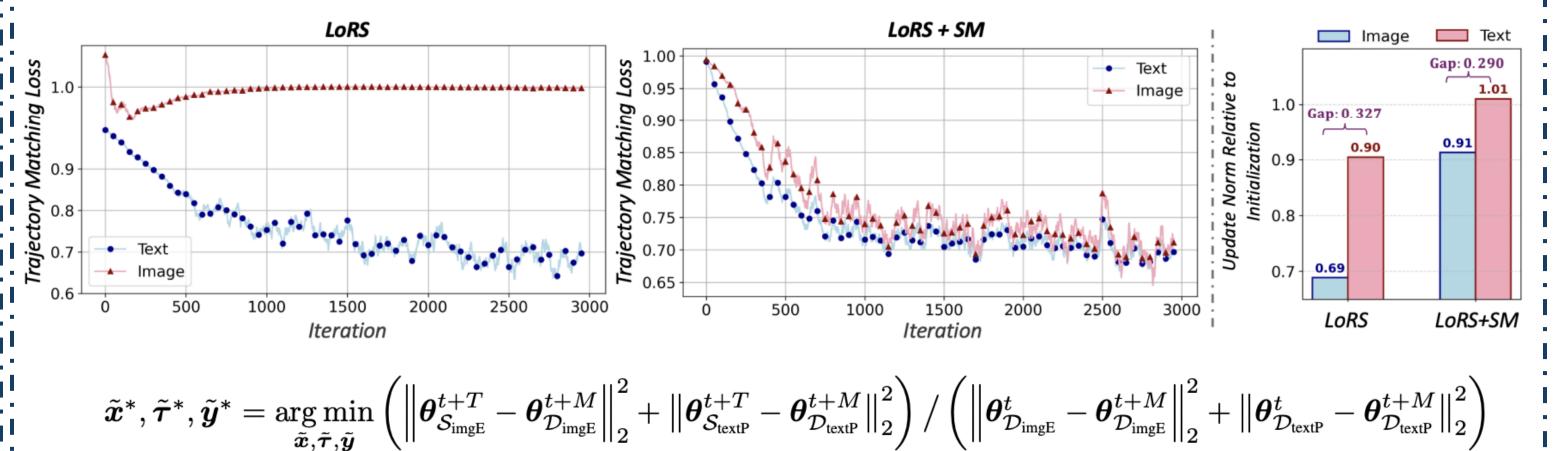
Reduced intra-modal similarity Reduced inter-modal

$$ilde{ au}_{m}^{\prime + ext{noise}} = ext{Normalize} \left(f^{ ext{textP}}((1 - \lambda) ilde{ au}_{m} + \lambda ec{\Delta}_{m}) \right) \Rightarrow ilde{ au}_{m}^{\prime ext{blend}} = ext{Normalize} \left(f^{ ext{textP}}((1 - \lambda) ilde{ au}_{m} + \lambda ilde{ au}_{i}) \right)$$

$$ilde{ au}_{m}^{\prime ext{hoise}} = ext{Normalize} \left(f^{ ext{textP}}((1 - \lambda) ilde{ au}_{n} + \lambda ilde{ au}_{i}) \right)$$

$$ilde{ au}_{m}^{\prime ext{blend}} = ext{Normalize} \left(f^{ ext{textP}}((1 - \lambda) ilde{ au}_{n} + \lambda ilde{ au}_{i}) \right)$$

✓ Enhancing Cross-modal Alignment via Symmetric Projection Trajectory Matching



 $oldsymbol{ ilde{x}^*, ilde{ au}^*, ilde{oldsymbol{y}^*}} oldsymbol{ ilde{x}^*, ilde{ au}^*, ilde{oldsymbol{y}^*}} = rg \min_{ ilde{oldsymbol{x}^*, ilde{ au}^*, ilde{oldsymbol{x}^*}}} \left(\left\| oldsymbol{ heta}_{\mathcal{S}_{ ext{imgP}}}^{t+T} - oldsymbol{ heta}_{\mathcal{D}_{ ext{textP}}}^{t+T} - oldsymbol{ heta}_{\mathcal{D}_{ ext{textP}}}^{t+M}
ight|_2^2
ight) / \left(\left\| oldsymbol{ heta}_{\mathcal{D}_{ ext{imgP}}}^{t} - oldsymbol{ heta}_{\mathcal{D}_{ ext{textP}}}^{t+M} - oldsymbol{ heta}_{\mathcal{D}_{ ext{textP}}}^{t+M}
ight|_2^2
ight) + \left\| oldsymbol{ heta}_{\mathcal{D}_{ ext{textP}}}^{t} - oldsymbol{ heta}_{\mathcal{D}_{ ext{textP}}}^{t+M}
ight|_2^2
ight)$

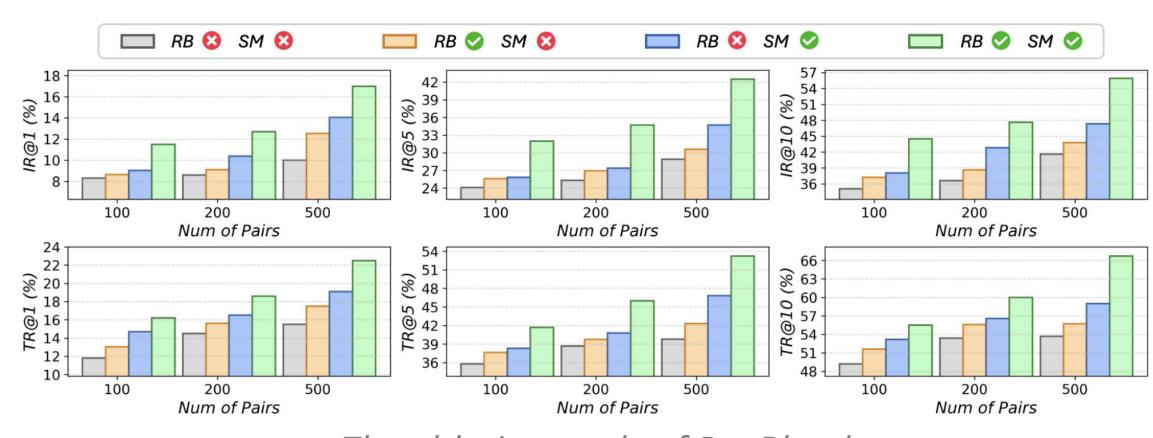
Enhance the image-side distillation

Experiments

Results:

Pairs	Ratio	Metric	Coreset Selection				Dataset Distillation				
i uns	Rano		Rand	Herd [50]	K-Cent [16]	Forget [45]	MTT-VL [51]	TESLA-VL [52]	LoRS [52]	Ours	
						Flickr-30k	ζ				
500	1.7%	IR@1	2.4	3.0	3.5	1.8	6.6 _{±0.3}	$1.1_{\pm 0.2}$	$10.0_{\pm 0.2}$	17.0 _{±0.6}	
		IR@5	10.5	10.0	10.4	9.0	$20.2_{\pm 1.2}$	$7.3_{\pm 0.4}$	$28.9_{\pm 0.7}$	42.5 $_{\pm 0.5}$	
		IR@10	17.4	17.0	17.3	15.9	$30.0_{\pm 2.1}$	$12.6_{\pm 0.5}$	$41.6_{\pm 0.6}$	55.9 _{±0.6}	
		TR@1	5.2	5.1	4.9	3.6	$13.3_{\pm 0.6}$	$5.1_{\pm 0.2}$	$15.5_{\pm 0.7}$	22.5 \pm 0.4	
		TR@5	18.3	16.4	16.4	12.3	$32.8_{\pm 1.8}$	$15.3_{\pm 0.5}$	$39.8_{\pm 0.4}$	53.2 ±0.3	
		TR@10	25.7	24.3	23.3	19.3	$46.8_{\pm0.8}$	$23.8_{\pm 0.3}$	$53.7 \scriptstyle{\pm 0.3}$	66.7 ±0.3	
						COCO					
500	4.4‰	IR@1	1.1	1.7	1.1	0.8	2.5 _{±0.5}	0.8 _{±0.2}	$2.8_{\pm 0.2}$	6.2 ±0.1	
		IR@5	5.0	5.3	6.3	5.8	$8.9_{\pm 0.7}$	$3.6_{\pm 0.6}$	$9.9_{\pm 0.5}$	19.9 \pm 0.3	
		IR@10	8.7	9.9	10.5	8.2	$15.8_{\pm 1.5}$	$6.7_{\pm 0.9}$	$16.5_{\pm 0.7}$	30.6 \pm 0.1	
		TR@1	1.9	1.9	2.5	2.1	$5.0_{\pm 0.4}$	$1.7_{\pm 0.4}$	$5.3_{\pm 0.5}$	7.0 $_{\pm 0.2}$	
		TR@5	7.5	7.8	8.7	8.2	$17.2_{\pm 1.3}$	$5.9_{\pm 0.8}$	$18.3_{\pm 1.5}$	22.0 $_{\pm 0.3}$	
		TR@10	12.5	13.7	14.3	13.0	$26.0_{\pm 1.9}$	$10.2_{\pm 1.0}$	$27.9_{\pm 1.4}^{-}$	$32.9_{\pm 0.6}$	

Comparison with SOTAs on Flickr-30k & COCO



The ablation study of RepBlend

Methods	ImageNet-10 Classification		TextCaps Retrieval						
	ACC@1	ACC@5	IR@1	IR@5	IR@10	TR@1	TR@5	TR@10	
LoRS [55]	21.4	74.4	1.7	5.1	8.4	0.4	1.7	3.1	
Ours	27.6	76.2	3.1	9.4	14.5	1.9	6.2	10.3	

Zero-Shot Generalization

Methods	LoRS [52]	Ours				
(IR@1, TR@1) (%)	(8.3, 11.8)	(11.5, 16.2				
E	Buffer					
Speed (min/traj) Memory (GB/traj)	70 1.63	40 0.73				
Dis	Distillation					
Speed (s/iter) Peak GPU VRAM (GB)	11.5 21.78	1.71 10.17				

Better performance & higher speed

Visualization

References:

Beyond Modality Collapse: Representations Blending for Multimodal Dataset Distillation. Zhang, Ziruo, and Du, Jiawei and Liu, Zuozhu and Zhou, Joey Tianyi. NeurIPS 2025. Low-Rank Similarity Mining for Multimodal Dataset Distillation. Xu, Yue and Lin, Zhilin and Qiu, Yusong and Lu, Cewu and Li, Yong-Lu. ICML 2024