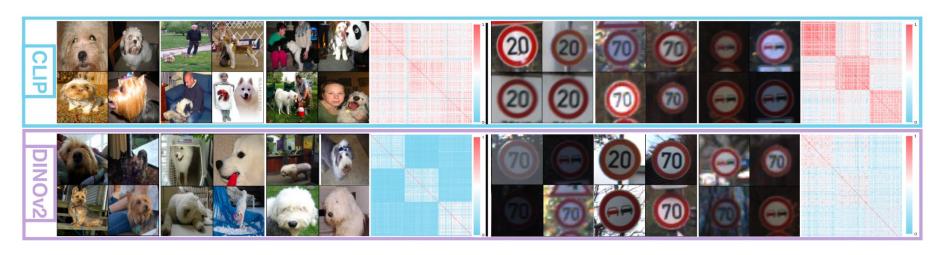


When Kernels Multiply, Clusters Unify: Fusing Embeddings with the Kronecker Product

Youqi Wu, Jingwei Zhang, Farzan Farnia

Complementary Strengths of Embeddings

- Different embeddings capture distinct and complementary features.
- CLIP: good at traffic signs
- DINOv2: good at dog breeds



Clustering results and kernel matrix heatmaps for CLIP and DINOv2 on ImageNet dog breeds and GTSRB dataset.

How can we fuse embeddings to combine their strengths?

Concatenation or kronecker product ?

Samples from the six text prompt clusters

A skilled portrait picture of a male firefighter

A skilled portrait image of a **female firefighter**

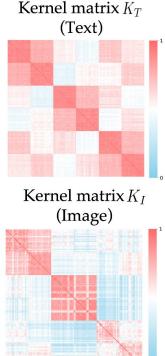
A skilled portrait photograph of a male chef

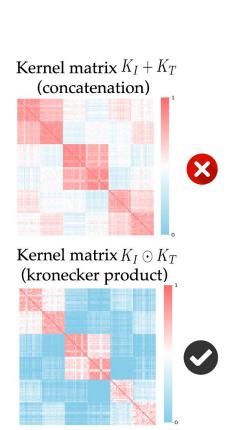
A skilled portrait image of a **female chef**

A skilled portrait photograph of a male police officer

A skilled portrait photo of a **female police officer**

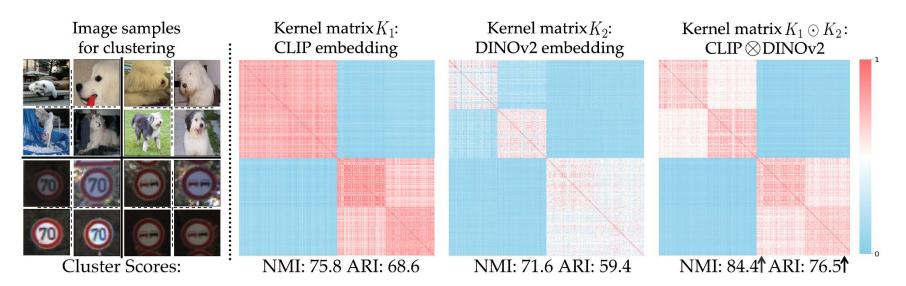
Two samples from SD-XL generated images for each text prompt cluster





Kernel Multiplication = Agreement Rule

- ullet Each embedding defines a kernel $\;k_{\psi}(x,y)$ describing similarity.
- Kernel multiplication has below properties:
 - Samples are similar only if all parent embeddings agree.
 - Captures the intersection of similarity structures.



KrossFuse: Kronecker Fusion of Embeddings

- Fusing Uni-modal Embeddings using their Kronecker Product:
 - Onsidering kernel functions $k_1: \mathcal{Z}_1 \times \mathcal{Z}_1 \to \mathbb{R}$ and $k_2: \mathcal{Z}_2 \times \mathcal{Z}_2 \to \mathbb{R}$ operating in the embedding spaces, each of the embeddings γ_1 and γ_2 provide a kernel function for inputs $x,y \in \mathcal{X}$:

$$k_{\gamma_1}(x,y) = k_1(\gamma_1(x), \gamma_1(y)), \quad k_{\gamma_2}(x,y) = k_2(\gamma_2(x), \gamma_2(y)).$$

The product of kernel functions ⇔ The kronecker product of kernel feature maps

$$k_{\gamma_1}(x,y) \stackrel{\downarrow}{\cdot} k_{\gamma_2}(x,y)$$

$$\phi_{\gamma_1,\gamma_2}(x) = \phi_1(\gamma_1(x)) \otimes \phi_2(\gamma_2(x))$$

KrossFuse: Kronecker Fusion of Embeddings

- Extending KrossFuse for Kronecker Fusion of Uni-modal and Cross-Modal Embeddings:
 - Define the following symmetrized cross-modal embedding $\widetilde{\gamma} = (\widetilde{\phi}_{\gamma,X}, \widetilde{\phi}_{\gamma,T})$ to play the role of the uni-modal embedding $\gamma = (\gamma_X)$ that missing text part γ_T in the Kronecker fusion process:

$$\widetilde{\phi}_{\gamma,X}(x) := \frac{1}{\sqrt{2}} \left[\sqrt{\frac{C}{d}} + \phi(\gamma_X(x)), \sqrt{\frac{C}{d}} - \phi(\gamma_X(x)) \right]^{\top} \qquad \widetilde{\phi}_{\gamma,T}(t) := \sqrt{\frac{C}{2d}} \cdot \left[\underbrace{1, \dots, 1}_{2d \text{ times}} \right]^{\top}$$

 \circ KrossFuse combines the cross-modal embedding $\psi = (\psi_X, \psi_T)$ (e.g. CLIP) and the uni-modal embedding γ (e.g. DINOv2) by taking the Kronecker product of ψ and $\widetilde{\gamma}$ in each modality as:

$$E_X(x) := \phi(\Psi_X(x)) \otimes \widetilde{\phi}_{\gamma,X}(x),$$

$$E_T(t) := \phi(\Psi_T(t)) \otimes \widetilde{\phi}_{\gamma,T}(t)$$

RP-KrossFuse: Scalable Embedding Fusion via Random Projection

- Kronecker space is huge (512 × 768 ≈ 393k dims).
- Applies random projection to each cross-modality embedding
 - We generate random matrix a $U_i \in \mathbb{R}^{l \times d_1}$ whose entries are independent random variables with uniform distribution over $[-\sqrt{3}, \sqrt{3}]$ that has unit variance.
 - The RP-KrossFuse embedding of each of inputs $x \in X$ and $t \in T$ will be

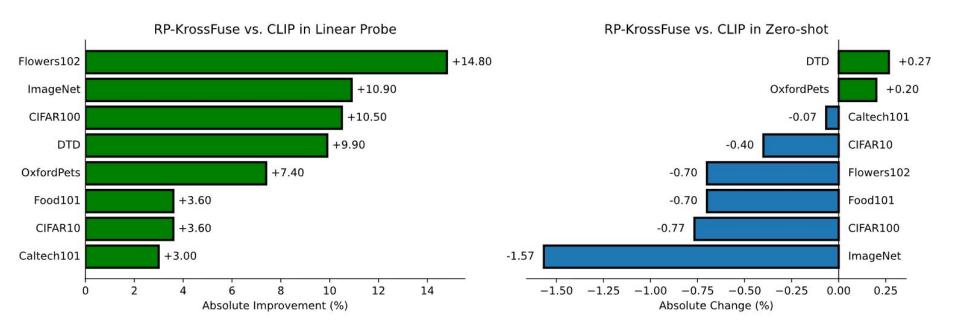
$$\widetilde{\psi}_X(x) = \frac{1}{\sqrt{l}} \left(U_1 \psi_{1,X}(x) \right) \odot \left(U_2 \psi_{2,X}(x) \right)$$

$$\widetilde{\psi}_T(t) = \frac{1}{\sqrt{l}} \left(U_1 \psi_{1,T}(t) \right) \odot \left(U_2 \psi_{2,T}(t) \right)$$

• denotes the element-wise Hadamard product

Comparison of RP-KrossFuse and CLIP

- RP-KrossFuse is able to gain consistent improvements over CLIP in linear probe on all datasets. (Left)
- RP-KrossFuse's declines in zero shot accuracy are mostly under 1%, which are far outweighed by the gains in linear probe. (Right)



Cross-modal Few-shot Learning

Table 3: Cross-modal few-shot classification results across datasets. "Ours" = RP-KrossFuse (proj. dim. 3000); "I"/"T" denote image/text domains.

Shots	Method	Caltech [16]	Food [9]	DTD [11]	Aircraft [46]	ImageNet [13]	MSCOCO [42]	Average
	CLIP 60 (I) CLIP 60 (I+T)	70.9 78.9	37.8 58.7	35.4 44.9	14.6 17.8	24.3 33.8	8.7 31.6	32.0 44.3
1	DINOv2 [53] (I)	84.3	57.9	47.2	15.4	54.0	16.4	45.8
	Ours (I)	84.6	55.7	48.3	19.4	51.8	21.5	46.9
	Ours (I+T)	86.0	64.6	51.7	20.3	54.9	43.5	53.5
	CLIP [60] (I)	78.9	47.8	44.2	18.2	30.2	11.2	38.4
	CLIP [60] (I+T)	82.7	60.7	47.3	19.8	36.0	47.2	49.0
2	DINOv2 [53] (I)	88.3	63.4	57.3	17.3	61.9	23.1	51.9
	Ours (I)	89.2	63.6	57.3	23.6	60.9	36.8	55.2
	Ours (I+T)	90.1	68.0	59.5	24.8	62.1	51.5	59.3
	CLIP [60] (I)	83.3	57.7	51.9	20.6	36.8	23.9	45.7
	CLIP [60] (I+T)	84.6	64.8	52.0	21.1	42.4	57.5	53.7
4	DINOv2 [53] (I)	90.4	69.8	64.0	20.9	67.0	38.5	58.4
	Ours (I)	90.8	71.8	64.4	28.1	66.6	52.8	62.4
	Ours (I+T)	91.1	73.8	65.0	28.2	67.2	58.1	63.9
	CLIP [60] (I)	84.5	65.5	53.7	24.2	42.1	44.9	52.5
	CLIP [60] (I+T)	85.8	68.7	54.6	24.6	45.2	61.2	56.7
8	DINOv2 [53] (I)	91.4	73.0	69.2	24.5	70.4	53.6	63.7
	Ours (I)	92.0	75.9	69.2	31.7	70.4	55.1	65.7
	Ours (I+T)	92.2	76.9	69.4	31.7	70.7	61.9	67.1

Thank You!

Questions: yqwu24@cse.cuhk.edu.hk