Semi-Infinite Nonconvex Constrained Min-Max Optimization

Cody Melcher¹ Zeinab Alizadeh² Lindsey Hiett² Afrooz Jalilzadeh² Erfan Yazdandoost Hamedani²

¹School of Mathematical Sciences, University of Arizona, Tucson, AZ, USA

²Department of Systems and Industrial Engineering, University of Arizona, Tucson, AZ, USA

Problem, Motivation, and Challenges

Problem setup:

$$\min_{x \in \mathbb{R}^n} \max_{y \in Y} \phi(x,y) \quad \text{s.t.} \quad \psi(x,w) \leq 0, \ \forall w \in W$$

- Constrained min-max structure, infinite cardinality constraint set, non-convex in x
- Natural connection to robust and distributionally robust learning
- Classical methods only able to handle parts of this structure

Problem, Motivation, and Challenges

• Problem setup:

$$\min_{x \in \mathbb{R}^n} \max_{y \in Y} \phi(x,y) \quad \text{s.t.} \quad \psi(x,w) \leq 0, \ \forall w \in W$$

- Constrained min-max structure, infinite cardinality constraint set, non-convex in x
- Natural connection to robust and distributionally robust learning
- Classical methods only able to handle parts of this structure

Challenges:

- Variable coupling due to min-max structure
- ullet Feasibility enforcement over infinite W
- Finding feasible optimal solution (constrained non-convex)

Problem, Motivation, and Challenges

Problem setup:

$$\min_{x \in \mathbb{R}^n} \max_{y \in Y} \phi(x,y) \quad \text{s.t.} \quad \psi(x,w) \leq 0, \ \forall w \in W$$

- Constrained min-max structure, infinite cardinality constraint set, non-convex in x
- Natural connection to robust and distributionally robust learning
- Classical methods only able to handle parts of this structure

Challenges:

- Variable coupling due to min–max structure
- ullet Feasibility enforcement over infinite W
- Finding feasible optimal solution (constrained non-convex)
- ✓ This work: first-order algorithm with non-asymptotic convergence guarantee to ε-KKT point

Application: Robust MTL

Formulation:

$$\begin{split} \min_{x \in \mathbb{R}^m} \ \max_{y^{(1)} \in Y_1} \ \sum_{\xi_j \in D_1^{tr}} y_j^{(1)} \, \ell_1(x, \xi_j) \\ \text{s.t.} \ \ \sum_{\xi_i \in D_1^{tr}} y_j^{(i)} \, \ell_i(x, \xi_j) \leq r_i, \quad \forall \, y^{(i)} \in Y_i, \, \, \forall \, i \in \{2, \dots, T\}. \end{split}$$

- ullet Prioritize learning one task while ensure remaining tasks have learning loss no worse than target level r.
- Clear constrained min–max structure, task loss $\ell_i(x,\xi_j)$ may be nonconvex in x,
- Constraint must holds for all $y^{(i)} \in Y_i$, the ambiguity set which has infinite cardinality.

Assumptions: Structure and Regularity

• Semi-infinite min-max problem:

$$\min_{x \in \mathbb{R}^n} \max_{y \in Y} \phi(x,y) \quad \text{s.t.} \quad \psi(x,w) \leq 0, \ \forall w \in W$$

Assumptions: Structure and Regularity

• Semi-infinite min-max problem:

$$\min_{x \in \mathbb{R}^n} \max_{y \in Y} \phi(x,y) \quad \text{s.t.} \quad \psi(x,w) \leq 0, \ \forall w \in W$$

- Structural assumptions:
 - $Y \subseteq \mathbb{R}^m$, $W \subseteq \mathbb{R}^\ell$ nonempty, convex, closed.
 - For each x, $\phi(x,\cdot)$, $\psi(x,\cdot)$ are strongly concave or satisfy PL.
 - ϕ, ψ continuously differentiable, Lipschitz smooth, bounded ∇_x .

Assumptions: Structure and Regularity

• Semi-infinite min-max problem:

$$\min_{x \in \mathbb{R}^n} \max_{y \in Y} \phi(x,y) \quad \text{s.t.} \quad \psi(x,w) \leq 0, \ \forall w \in W$$

- Structural assumptions:
 - $Y \subseteq \mathbb{R}^m, \ W \subseteq \mathbb{R}^\ell$ nonempty, convex, closed.
 - For each x, $\phi(x,\cdot)$, $\psi(x,\cdot)$ are strongly concave or satisfy PL.
 - ϕ, ψ continuously differentiable, Lipschitz smooth, bounded ∇_x .
- Regularity (Łojasiewicz-type):

$$[\psi(x,w)]_{+}^{2\theta} \le \mu \|\nabla_x \psi(x,w)[\psi(x,w)]_{+}\|, \quad \theta \in (0,1), \ \mu > 0.$$

Implicit constrained problem:

$$\min_{x} f(x) \text{ s.t. } g(x) \leq 0, \qquad f(x) = \max_{y \in Y} \phi(x,y), \quad g(x) = \max_{w \in W} \psi(x,w).$$

Implicit constrained problem:

$$\min_x f(x) \text{ s.t. } g(x) \leq 0, \qquad f(x) = \max_{y \in Y} \phi(x,y), \quad g(x) = \max_{w \in W} \psi(x,w).$$

• One-step QP search direction:

$$\min_{d} \|\nabla f(x_k) + d\|^2 \quad \text{s.t.} \quad \nabla g(x_k)^\top d + \frac{\alpha_k}{\|\nabla g(x_k)\|} \le 0$$

yields

$$\begin{split} d_k &= -\nabla_x \phi(x_k, y_k) - \lambda_k \nabla_x \psi(x_k, w_k), \\ \lambda_k &= \frac{\left[-\nabla_x \psi(x_k, w_k)^\top \nabla_x \phi(x_k, y_k) + \alpha_k \|\nabla_x \psi(x_k, w_k)\| \right]_+}{\|\nabla_x \psi(x_k, w_k)\|^2}. \end{split}$$

g Issue: λ_k may blow up near feasible or critical points.

• Implicit constrained problem:

$$\min_{x} f(x) \text{ s.t. } g(x) \leq 0, \qquad f(x) = \max_{y \in Y} \phi(x,y), \quad g(x) = \max_{w \in W} \psi(x,w).$$

• One-step QP search direction:

$$\min_{d} \|\nabla f(x_k) + d\|^2 \quad \text{s.t.} \quad \nabla g(x_k)^\top d + \alpha_k \|\nabla g(x_k)\| \le 0$$

yields

$$\begin{split} d_k &= -\nabla_x \phi(x_k, y_k) - \lambda_k \nabla_x \psi(x_k, w_k), \\ \lambda_k &= \frac{\left[-\nabla_x \psi(x_k, w_k)^\top \nabla_x \phi(x_k, y_k) + \alpha_k \|\nabla_x \psi(x_k, w_k)\| \right]_+}{\|\nabla_x \psi(x_k, w_k)\|^2}. \end{split}$$

- **9** Issue: λ_k may blow up near feasible or critical points.
- ✓ Fix: use indicator $\zeta(x_k, w_k) = [\psi(x_k, w_k)]_+ \|\nabla_x \psi(x_k, w_k)\|$

Implicit constrained problem:

$$\min_x f(x) \text{ s.t. } g(x) \leq 0, \qquad f(x) = \max_{y \in Y} \phi(x,y), \quad g(x) = \max_{w \in W} \psi(x,w).$$

• One-step QP search direction:

$$\min_{d} \|\nabla f(x_k) + d\|^2 \quad \text{s.t.} \quad \nabla g(x_k)^\top d + \frac{\alpha_k}{\|\nabla g(x_k)\|} \le 0$$

yields

$$d_k = -\nabla_x \phi(x_k, y_k) - \lambda_k \nabla_x \psi(x_k, w_k),$$

$$\lambda_k = \frac{\left[-\nabla_x \psi(x_k, w_k)^\top \nabla_x \phi(x_k, y_k) + \alpha_k \|\nabla_x \psi(x_k, w_k)\|\right]_+}{\|\nabla_x \psi(x_k, w_k)\|^2}.$$

- \P Issue: λ_k may blow up near feasible or critical points.
- ✓ Fix: use indicator $\zeta(x_k, w_k) = [\psi(x_k, w_k)]_+ \|\nabla_x \psi(x_k, w_k)\|$
- Resulting iDB-PD updates: $x_{k+1} \leftarrow x_k + \gamma_k d_k$, $y_{k+1} \approx \arg\max_{y \in Y} \phi(x_{k+1}, y)$, $w_{k+1} \approx \arg\max_{w \in W} \psi(x_{k+1}, w)$

Convergence Analysis

Let $\{x_k, \lambda_k\}_{k=0}^{T-1}$ be the sequence generated by Algorithm 1. For any $k \geq 0$,

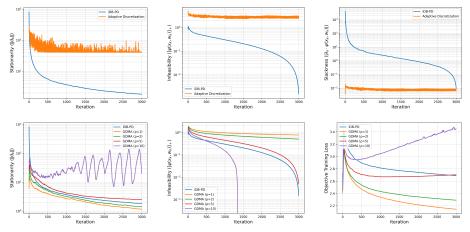
$$\begin{split} \alpha_k &= \frac{T^{1/3}}{(k+2)^{1+\omega}}, \qquad \gamma_k = \gamma = \mathcal{O}\!\Big(\min\{T^{-1/3}, (L_f + L_{xy}^\phi)^{-1}\}\Big), \\ N_k &= \mathcal{O}(\log(k+1)), \\ M_k &= \begin{cases} \mathcal{O}(\max\{\max\{1,\frac{1}{2\theta}\}\log(T), \log(T[\psi(x_k,w_k)]_+^{4\theta-2})\}), & \zeta(x_k,w_k) > 0, \\ \mathcal{O}(\max\{1,\frac{1}{2\theta}\}\log(T)), & \text{otherwise}. \end{cases} \end{split}$$

For any $\varepsilon > 0$, there exists $t \in \{0, \dots, T-1\}$ such that

$$\begin{split} \|\nabla f(x_t) + \lambda_t \nabla g(x_t)\| &\leq \varepsilon \quad \text{in} \quad T = \mathcal{O}(\varepsilon^{-3}), \\ [g(x_t)]_+ &\leq \varepsilon \quad \text{in} \quad T = \mathcal{O}(\varepsilon^{-6\theta}), \\ |\lambda_t g(x_t)| &\leq \varepsilon \quad \text{in} \quad T = \mathcal{O}\left(\varepsilon^{-3\theta/(1-\theta)}\right). \end{split}$$

Experiment: Robust Multi-task Learning

- Two overlaid digits from MNIST with differing priority.
- Compare iDB–PD vs. AD (COOPER) and GDMA baselines.



 iDB-PD achieves a better joint trade-off between a reduction in stationarity and infeasibility than either AD or GDMA.