# **SAFE**: Multitask Failure Detection for Vision-Language-Action Models

Qiao Gu, Yuanliang (Avery) Ju, Shengxiang (Owen) Sun, Igor Gilitschenski, Haruki Nishimura, Masha Itkina, Florian Shkurti

NeurIPS 2025

vla-safe.github.io









## VLAs still have limited success rates and diverse failure modes.





"Take toast out of toaster"

"Replace the paper towel"

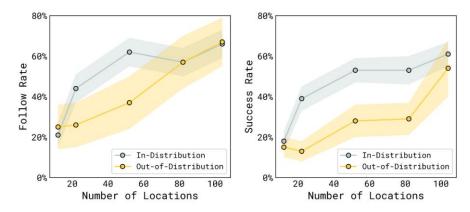
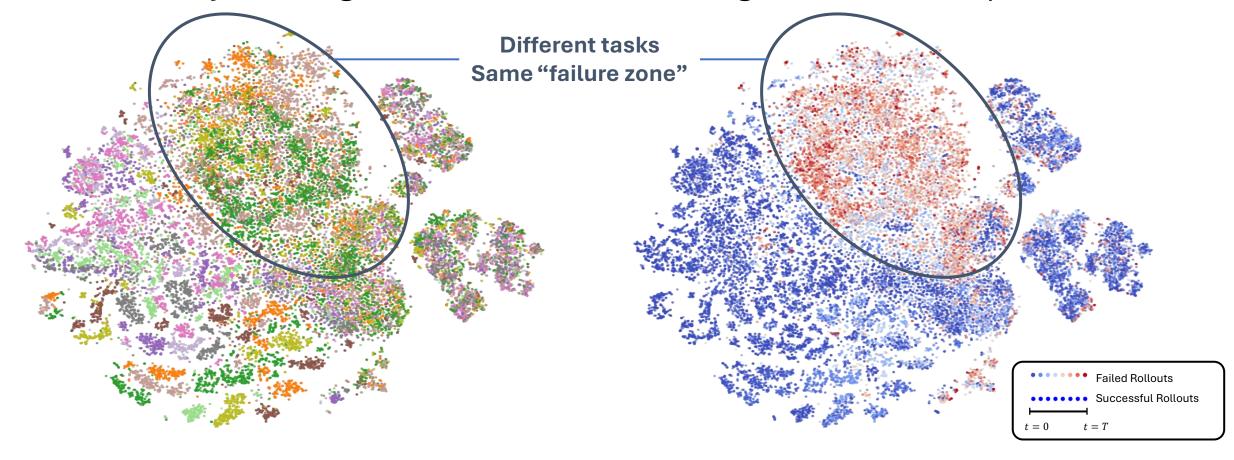



Fig. 9: Evaluating language following with different numbers of training locations. We evaluate language following rate and success rate for picking up user-indicated items and placing them into drawers or sinks, averaged over seen object categories ("in-distribution") or unseen categories ("out-of-distribution"). Performance increases steadily as we increase the number of training locations.

SOTA VLAs achieve <80% average task progress.

We need a failure detector for safe and reliable deployment of VLA models.

#### Generalist VLAs need multitask failure detectors


#### Existing Task-specific Failure Detection Train a failure Task 1 Collect rollouts Detect failure for task 1 detector Train a failure Detect failure for Task 2 Collect rollouts detector task 2 Task 3 Collect rollouts Train a failure Detect failure for detector task 3 Detect failure for Task 4 Collect rollouts Train a failure task 4 detector × No cross-task generalization × Labor-intensive × Only for task-specific policies

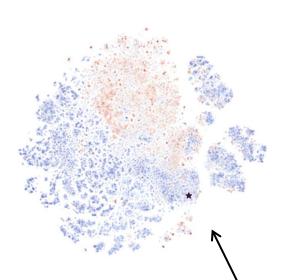
#### **Multitask Failure Detection** Detect failure for Seen Task 1 Collect rollouts task 1 Seen Task 2 Detect failure for Collect rollouts task 2 SAFE: A Multi-task **Failure** Unseen Task 3 Detect failure for **Detector** task 3 for VLA Models Detect failure for Unseen Task 4 task 4 √ Work for unseen task zero-shot ✓ Avoid data collection and re-training

√ For generalist policies like VLAs

## Key insight: VLA captures high-level knowledge about task failure in its feature space

• VLAs may have high-level semantic knowledge in its feature space.



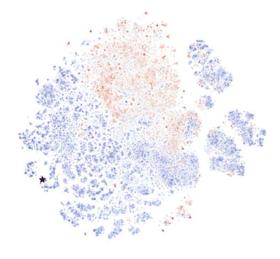

t-SNE of policy latent features, colored by task failures

### How Features Evolve in the Feature Space?

turn on the stove and put the moka pot on it Ep 10, Succ 1

RGB obs frame 0



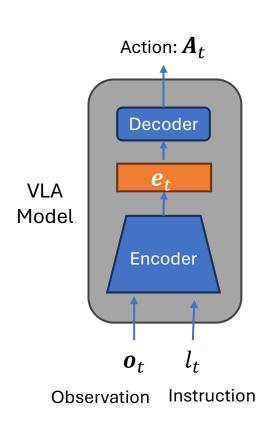



Successful rollouts: Embeddings always stay out of the red "failure zone".

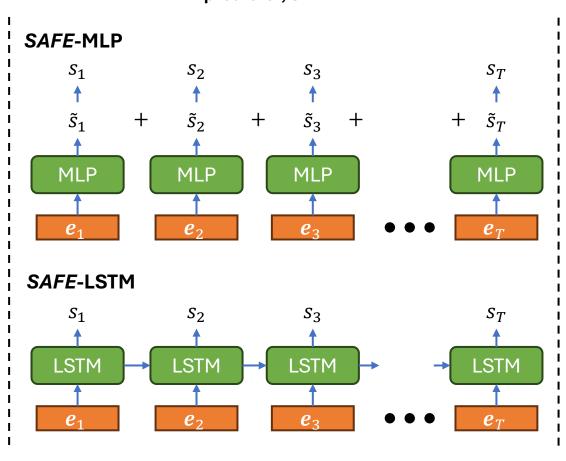
turn on the stove and put the moka pot on it Ep 30, Succ 0

RGB obs frame 0

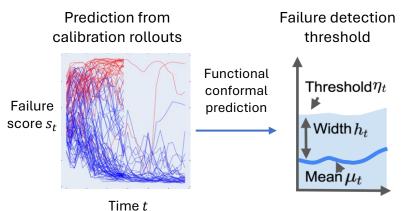




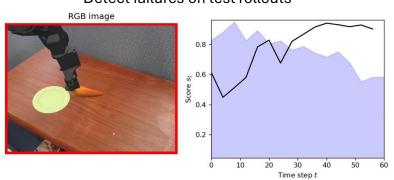

Failed rollouts: Robot drops the pot by accident. Embeddings go into the "failure zone".


VLA Embeddings in this rollout are visualized as popping stars.

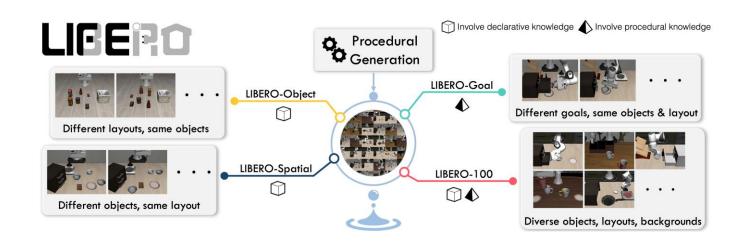
# Multi-task Failure Detector based on VLA Internal Features


#### 1. Extract latent features from VLA models

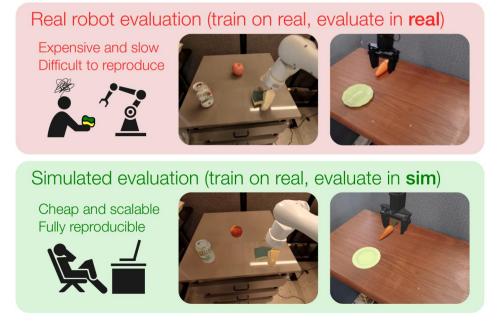



### 2. Learning the failure score predictor, *SAFE*




### 3. Calibrate failure detection threshold and deploy



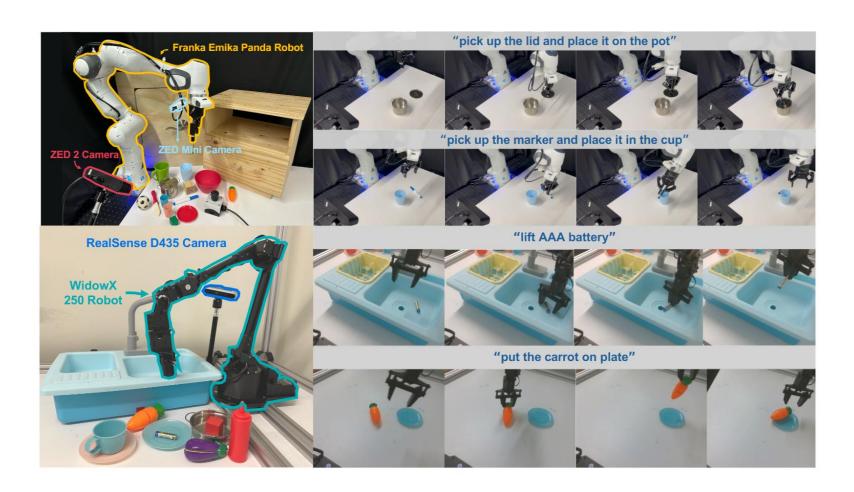

Detect failures on test rollouts



## Simulation Experiment Setup



LIBERO-10




SimplerEnv

### Real-world Experiment Setup

 $\pi_0$ -FAST on Franka

**OpenVLA on WidowX** 



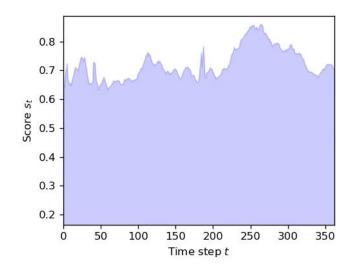
## SAFE outperforms diverse baselines in both simulation and real world

|                 | VLA Model OpenVLA Benchmark LIBERO |       | $\pi_0$ -FAST<br>LIBERO |       | $\pi_0$ LIBERO |       | $\pi_0^*$ SimplerEnv |       | Average |       |              |
|-----------------|------------------------------------|-------|-------------------------|-------|----------------|-------|----------------------|-------|---------|-------|--------------|
|                 | Eval Task Split                    | Seen  | Unseen                  | Seen  | Unseen         | Seen  | Unseen               | Seen  | Unseen  | Seen  | Unseen       |
| Token Unc.      | Max prob.                          | 50.25 | 53.83                   | 61.32 | 69.44          | -     | -                    | -     | -       | 55.79 | 61.64        |
|                 | Avg prob.                          | 44.05 | 51.58                   | 52.46 | 58.04          | -     | -                    | -     | -       | 48.26 | 54.81        |
|                 | Max entropy                        | 52.94 | 53.09                   | 46.69 | 62.96          | -     | -                    | -     | -       | 49.81 | 58.03        |
|                 | Avg entropy                        | 45.27 | 50.03                   | 50.93 | 58.63          | -     | -                    | -     | -       | 48.10 | 54.33        |
| Embed. Distr.   | Mahalanobis dist.                  | 62.03 | 58.85                   | 93.56 | 83.79          | 77.12 | 74.31                | 88.42 | 52.84   | 80.28 | 67.45        |
|                 | Euclidean dist. k-NN               | 66.00 | 55.23                   | 92.04 | 84.12          | 75.64 | 70.73                | 89.73 | 68.41   | 80.85 | 69.62        |
|                 | Cosine dist. k-NN                  | 67.09 | 69.45                   | 92.09 | 84.64          | 75.76 | 70.31                | 90.19 | 71.32   | 81.28 | 73.93        |
|                 | PCA-KMeans [9]                     | 57.18 | 55.10                   | 68.46 | 57.12          | 64.92 | 60.35                | 66.88 | 61.19   | 64.36 | 58.44        |
|                 | RND [39]                           | 52.57 | 46.88                   | 88.67 | 81.57          | 71.92 | 69.44                | 85.07 | 65.89   | 74.56 | 65.95        |
|                 | LogpZO [8]                         | 61.57 | 52.91                   | 91.52 | 83.07          | 76.80 | 73.23                | 88.79 | 74.66   | 79.67 | 70.97        |
| Sample Consist. | Action total var.                  | 62.76 | 65.43                   | 76.95 | 74.50          | 77.20 | 75.18                | 68.41 | 67.94   | 71.33 | 70.76        |
|                 | Trans. total var.                  | 55.33 | 58.99                   | 78.21 | 80.03          | 49.38 | 54.71                | 63.27 | 55.90   | 61.55 | 62.41        |
|                 | Rot. total var.                    | 47.85 | 55.30                   | 80.87 | 77.29          | 52.94 | 61.06                | 58.07 | 62.10   | 59.93 | 63.94        |
|                 | Gripper total var.                 | 61.84 | 64.48                   | 76.82 | 74.42          | 77.19 | 75.19                | 69.16 | 69.29   | 71.25 | 70.84        |
|                 | Cluster entropy                    | 50.16 | 51.44                   | 80.22 | 80.53          | 76.19 | 72.12                | 68.25 | 73.66   | 68.71 | 69.44        |
| Action Consist. | STAC [18]                          | -     | -                       | 83.07 | 85.31          | 46.55 | 47.91                | 60.74 | 62.21   | 63.45 | 65.14        |
|                 | STAC-Single                        | -     | -                       | 85.46 | 81.16          | 68.46 | 69.39                | 68.71 | 70.40   | 74.21 | 73.65        |
| SAFE (Ours)     | SAFE-LSTM                          | 70.24 | 72.47                   | 92.98 | 84.48          | 76.98 | 71.09                | 88.85 | 80.11   | 82.26 | 77.04        |
|                 | SAFE-MLP                           | 72.68 | 73.47                   | 90.06 | 80.44          | 73.50 | 73.27                | 89.50 | 84.82   | 81.43 | <b>78.00</b> |

|                | $\pi_0$ -FAS | T Franka | OpenVLA WidowX |              |  |  |
|----------------|--------------|----------|----------------|--------------|--|--|
| Method         | Seen         | Unseen   | Seen           | Unseen       |  |  |
| Max prob.      | 53.74        | 48.59    | 50.77          | 54.25        |  |  |
| Avg prob.      | 51.60        | 47.30    | 48.94          | 44.36        |  |  |
| Max entropy    | 59.23        | 53.50    | 51.88          | 49.19        |  |  |
| Avg entropy    | 50.67        | 46.08    | 47.72          | 53.84        |  |  |
| Mahala. dist.  | 75.54        | 53.93    | 82.37          | 70.00        |  |  |
| Euclid. k-NN   | 80.35        | 60.27    | 72.01          | 53.64        |  |  |
| Cosine $k$ -NN | 80.23        | 59.51    | 74.76          | 65.88        |  |  |
| PCA-KMeans     | 49.98        | 51.03    | 75.62          | 47.22        |  |  |
| RND            | 62.00        | 45.83    | 66.68          | 47.67        |  |  |
| LogpZO         | 64.43        | 52.24    | 62.94          | 51.32        |  |  |
| STAC-Single    | 45.24        | 38.01    | _              | _            |  |  |
| SAFE-LSTM      | 77.27        | 58.70    | 84.29          | <b>71.80</b> |  |  |
| SAFE-MLP       | 86.76        | 64.16    | 89.11          | 88.42        |  |  |

Failure detection ROC-AUC on simulation benchmarks

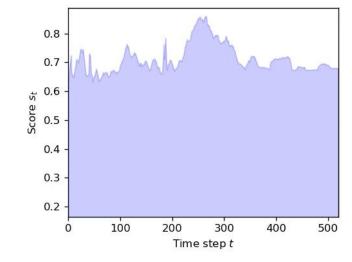
Failure detection ROC-AUC on real-world benchmarks


### SAFE Detecting Failure in Simulation

• SAFE-LSTM on OpenVLA + LIBERO

put both the alphabet soup and the tomato sauce in the basket Ep 6, Succ 1, Frame 0

RGB image






put both the alphabet soup and the tomato sauce in the basket Ep 28, Succ 0, Frame 0

**RGB** image





Successful rollout

Failed rollout: When the robot gets stuck while picking up alphabet soup, it raises a failure signal

## Thank you!

Paper & code: vla-safe.github.io