Pay attention to small weights

Chao Zhou, Advait Gadhikar, Tom Jacobs, Rebekka Burkholz

NeurIPS 2025

Intro to finetuning

Parameter-efficient finetuning

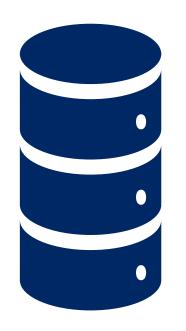
Method

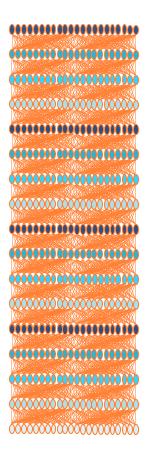
Intro to finetuning

Parameter-efficient finetuning

Method

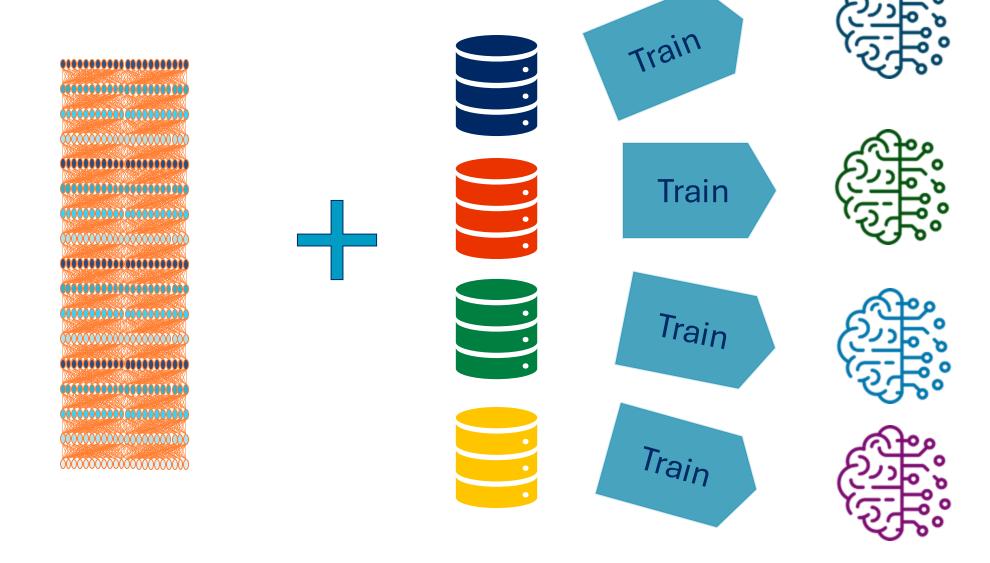
Intro to finetuning- large models



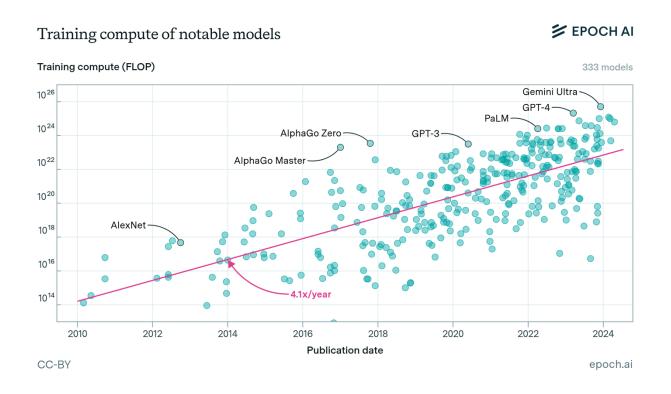


• • •

Intro to finetuning-finetuning



Intro to finetuning-but what is the cost?



compute

Intro to finetuning-but what is the cost?

Amortized hardware and energy cost to train frontier AI models over time **FPOCH AI**

money

Intro to finetuning

Parameter-efficient finetuning

Method

Parameter-efficient finetuning

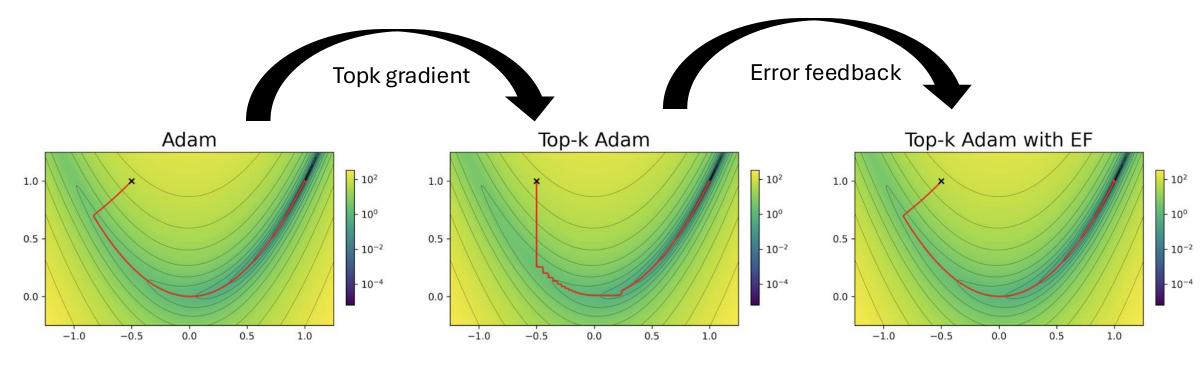
- Tech to reduce FT cost, including
 - √ identify subset of param to update: LoRA
 - ✓ Quantise optimizer state: Adamw-8bit
 - ✓ Project gradient to subspace: GaLore
 - **√**...

Intro to finetuning

Parameter-efficient finetuning

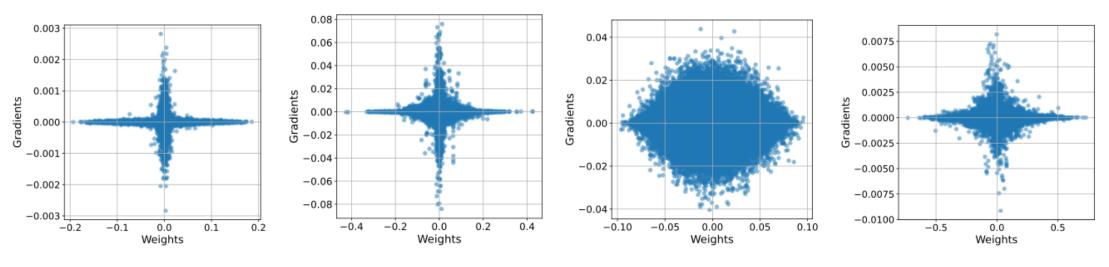
Method

From optimization perspective



Known as MicroAdam

Let's examine magnitude vs gradient



(a) NLP task: FT.

(b) CV task: FT.

(c) CV task: Train from (d) CV task: Train from scratch at step=0.

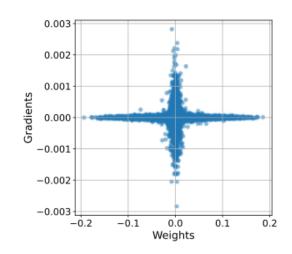
scratch at step=78100.

Let's examine magnitude vs gradient

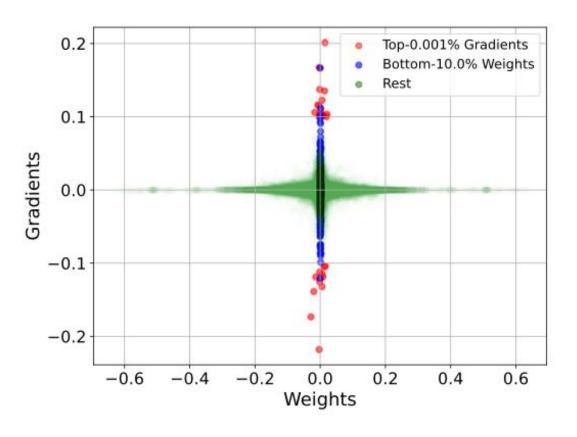
✓ large gradient -> small weights;

✓ stronger correlation in FT than pre-train;

Q: are they the same?



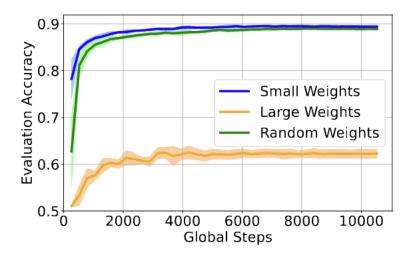
Overlap between small weights and large gradients



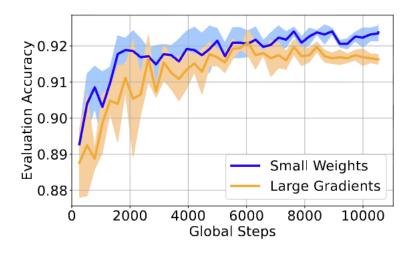
Weights and gradients are not identical.

Can we update only small weights?

Ablation study

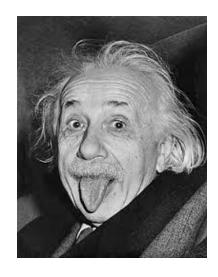


(a) Small vs. large vs. random weights.



(b) Small weights vs. large gradients.

Intuition behind



Pretrain large weights = critical features

Knowledgeable but stubborn

Small weights = plasticity

"Less" Knowledgeable but open

Theoretical motivation

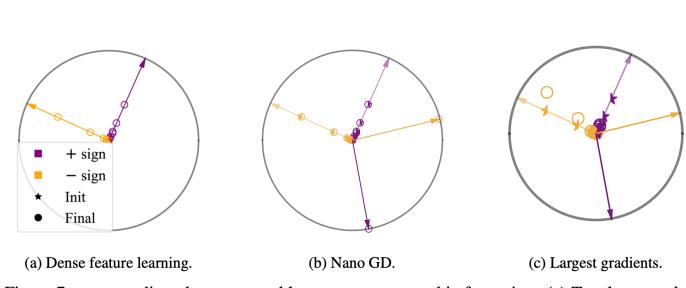
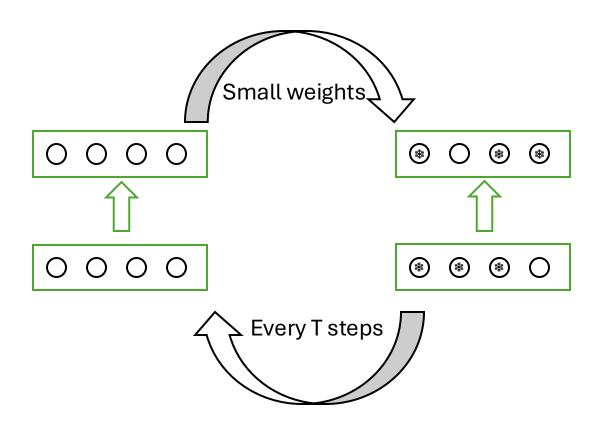
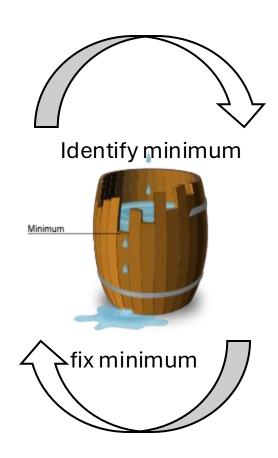


Figure 7: nano gradient descent provably prevents catastrophic forgetting. (a) Two layer student network learns teach networks representation. (b) Nano gradient descent keeps the original representation while learning the two extra neuron. (c) The largest gradients can lead to learning completely different representations when the task transferability is high.

NanoAdam: an opt for finetuning





• Exp on FT Llama 3.2 3B on Commonsense benckmark

Method	HellaSwag	Winogrande	PIQA	ARC-Easy	ARC-Challenge	OpenBookQA	SocialIQA	BoolQ AVG. memory tir	me (h)
MicroAdam NANOADAM	92.44 93.21	83.27 82.48	85.91 86.07	85.82 85.86	73.38 74.91	81.40 82.20	79.07 79.99		12.25 1 0.11
AdamW	77.71	74.11	63.33	83.63	68.34	75.20	76.10	66.67 73.14 37.75 3	21.8

Avoid forgetting

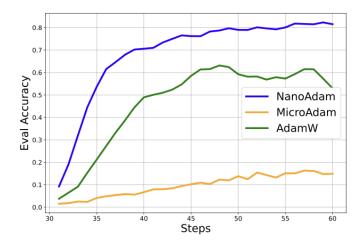
Averaged evaluation accuracy and parameter change in ℓ_2 distance, alongside learning rate.

Algorithm	LR (task1)	LR (task2)	AVG. Acc	ℓ_{2} Distance
AdamW	1e-4	1e-4	96.81%	0.83
MicroAdam	1e-4	1e-3	95.23%	0.75
NanoAdam	1e-3	2e-3	98.95 %	0.68

Avoid forgetting



(a) Generalization on Task 1.



(b) Generalization on Task 2.

Intro to finetuning

Parameter-efficient finetuning

Method

Conclusion

Small weight is sufficient to finetuning task;

Implicit weight decay;

Better generalization;

Save memory;

Avoid catastrophic forgetting.