

NeurIPS 2025 SeDPO: Learning to Rank for In-Context Example Retrieval

Yuwen Ji*, Luodan Zhang*, Ambyer Han*, Haoran Que, Lei Shi, Wang Chao, Yue Zhang†

Presenter: Luodan Zhang

What is ICL and Why it Matters

In-Context Learning (ICL) Definition:

- Parameter-efficient paradigm
 Adapt to new tasks or generate task-specific outputs via a few in-context examples (ICEs) in prompts.
- No model fine-tuning required

ICL Advantages:

- Reducing deployment/iteration costs Empowers few-shot rapid adaptation.
- No massive labeled data needed Excels in data-scarce, task-diverse, rapid prototyping scenarios.

Current Limitation

Mainstream ICL Retriever Training:

- Point-wise Paradigm
 Classify ICEs into "top-1 example" and "others" based on LLM scores.
- Critical Limitation
 Training objective (classification) misaligns with inference (ranking-based retrieval).

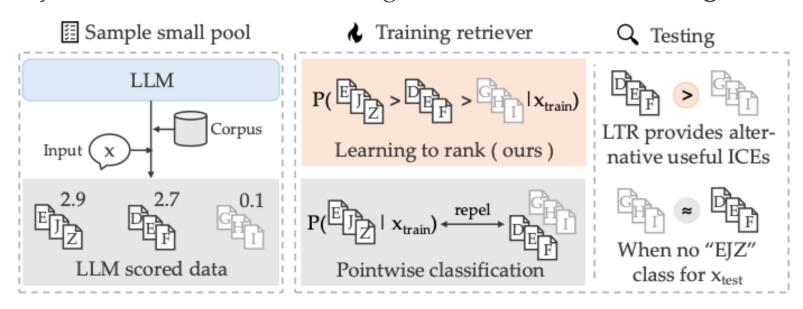


Fig.1. ICL Task Pipeline

SeDPO Introduction

Motivation

- Learning inter-ICE preference rankings outperforms binary classification.
- Even without exact matching ICEs, retrieves useful examples for better LLM performance.

Method: Train retrievers via a ranking task.

- ICEs's Partial Order by LLM's correct answer generation probability;
- Train retrievers with proposed SeDPO loss.

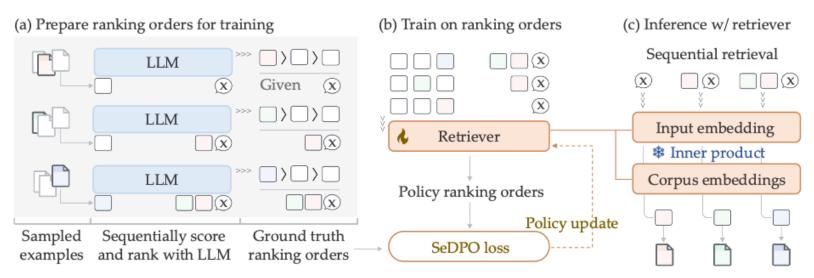


Fig.2. SeDPO Framework

How to Learn Ranking?

• ICL Score Φ_{LLM} :

Given input x, K-shot ICE sets $\{e^w\}$ and $\{e^l\}$.

 Φ_{LLM} : The normalized log-likelihood of true label *y* after $x + \{e\} \rightarrow LLM$.

The **partial order** relationships of ICEs:

$$\Phi_{LLM}(\{e^{W}\}, x, y) > \Phi_{LLM}(\{e^{l}\}, x, y)$$

means $\{e^w\}$ is more optimal.

• Retriever Score $\Phi_{retrieval}$

 $\Phi_{retrieval}$: Similarity between input x and example e_k given condition $\{e_i\}_{i < k}$.

$$\Phi_{retrieval} = sim(e_k, x | \{e_i\}_{i < k})$$

Fig.3. ICL Score

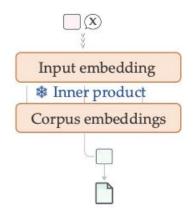


Fig.4. Retriever Score

How to Learn Ranking?

Use **DPO algorithm** to align the Φ_{LLM} and $\Phi_{retrieval}$ to learn the **preference ranking order** between different ICEs.

Retriever as Policy Model

$$\pi(e_{[1:K]}|x) = \prod_{k=1}^{K} \frac{\exp(\sin(e_k, x | \{e_i\}_{i < k}))}{\sum_{e_* \in \mathcal{C} \setminus \{e_i\}_{i < k}} \exp(\sin(e_*, x | \{e_i\}_{i < k}))}$$

DPO Loss Formula

$$\mathcal{L}_{\mathrm{DPO}}(\pi_{\theta}; \pi_{\mathrm{ref}}) =$$

$$-E_{(x,e_{[1:K]}^{w},e_{[1:K]}^{l})}\left[\log\sigma\left(\beta\log\frac{\pi_{\theta}(e_{[1:K]}^{w}|x)}{\pi_{\text{ref}}(e_{[1:K]}^{w}|x)}-\beta\log\frac{\pi_{\theta}(e_{[1:K]}^{l}|x)}{\pi_{\text{ref}}(e_{[1:K]}^{l}|x)}\right)\right]$$

Improving Ranking Learning

Standard DPO Loss Problem in Practice

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta}; \pi_{ref}) = -\mathbb{E}_{(x, e_{[1:k]}^{w}, e_{[1:k]}^{l}) \sim \mathcal{D}} \left[\log \sigma \left(\beta \cdot f_{\theta}(x, e_{[1:K]}^{w}) - \beta \cdot f_{\theta}(x, e_{[1:K]}^{l}) - \beta \cdot (\gamma_{w} - \gamma_{l}) \right) \right]$$

$$f_{\theta}(x, e_{[1:K]}^{j}) = \sum_{k=1}^{K} \left[\sin_{\theta}(e_{k}^{j}, x | \{e_{i}^{j}\}_{i < k}) - \sin_{\text{ref}}(e_{k}^{j}, x | \{e_{i}^{j}\}_{i < k}) \right], \quad j \in \{w, l\}$$

$$\gamma_{j} = \sum_{k=1}^{K} \log \frac{\sum_{e_{*} \in \mathcal{C} \setminus \{e_{i}^{j}\}_{i < k}} \exp(\sin_{\theta}(e_{*}, x | \{e_{i}^{j}\}_{i < k}))}{\sum_{e_{*} \in \mathcal{C} \setminus \{e_{i}^{j}\}_{i < k}} \exp(\sin_{\text{ref}}(e_{*}, x | \{e_{i}^{j}\}_{i < k}))}, \quad j \in \{w, l\}$$

Expensive computation!

Improving Ranking Learning

Sequential Relaxation

$$\pi(e_{[1:K]}|x) = \prod_{k=1}^{K} \frac{\exp(\sin(e_k, x | \{e_i\}_{i < k}))}{\sum_{e_* \in \mathcal{C} \setminus \{e_i\}_{i < k}} \exp(\sin(e_*, x | \{e_i\}_{i < k}))}$$

$$\pi(e_k|\tilde{x}_{k-1}) = \frac{\exp(\sin(e_k, \tilde{x}_{k-1}))}{\sum_{e_* \in \mathcal{C} \setminus \{e_i\}_{i \le k}} \exp(\sin(e_*, \tilde{x}_{k-1}))}$$

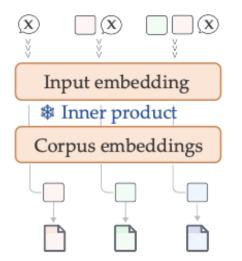
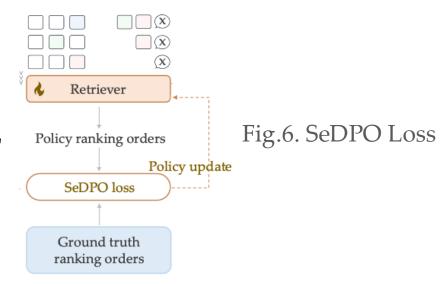


Fig.5. Sequential Retrieval

Improved SeDPO Loss with Sequential Relaxation

$$\mathcal{L}_{\text{SE-DPO}}(\pi_{\theta}; \pi_{ref}) = -E_{(\tilde{x}_{k}, e_{k}^{w}, e_{k}^{l}) \sim \tilde{\mathcal{D}}} \left[\log \sigma \left(\beta \cdot f_{\theta}(\tilde{x}_{k}, e_{k}^{w}) - \beta \cdot f_{\theta}(\tilde{x}_{k}, e_{k}^{l}) - \beta \cdot 0 \right) \right],$$

$$f_{\theta}(\tilde{x}_{k}, e_{k}^{j}) = \sin_{\theta}(e_{k}^{j}, \tilde{x}_{k}) - \sin_{\text{ref}}(e_{k}^{j}, \tilde{x}_{k})$$



Main Results

Table 1: Main results on various tasks. The **best results** and the <u>second-best</u> are highlighted. The *Avg*. of all metrics for tasks within the same category with significant improvements is marked by \uparrow .

		Coreference					
	MRPC		PAWS QQP			Ava	WSC
	acc	f1	acc	acc	f1	Avg.	acc/Avg.
Zeroshot	46.1 ± 0.0	45.3 ± 0.0	51.8 ± 0.0	48.4 ± 0.0	42.1 ± 0.0	46.7 ± 0.0	59.6 ± 0.0
Random	66.8 ± 3.0	79.5 ± 4.1	50.1 ± 3.8	40.6 ± 4.8	50.9 ± 7.8	57.6 ± 3.8	48.3 ± 8.2
BM25	57.8 ± 0.0	69.1 ± 0.0	48.9 ± 0.0	54.8 ± 0.0	55.4 ± 0.0	57.2 ± 0.0	52.4 ± 0.0
SBERT	56.4 ± 0.0	66.9 ± 0.0	49.4 ± 0.0	51.2 ± 0.0	56.2 ± 0.0	56.0 ± 0.0	46.2 ± 0.0
UDR	65.9 ± 4.6	75.4 ± 3.5	51.8 ± 1.2	74.1 ± 1.9	67.9 ± 2.4	67.0 ± 1.2	52.0 ± 4.7
UPRISE	74.0 ± 0.8	83.3 ± 0.1	49.1 ± 0.0	71.0 ± 1.0	69.8 ± 0.1	69.4 ± 0.2	46.5 ± 2.2
Se^2	77.6 ± 0.4	85.4 ± 0.3	54.7 ± 0.1	75.5 ± 0.1	72.8 ± 0.0	73.2 ± 0.2	55.1 ± 0.9
SE-DPO	77.9±0.9	85.6±0.2	73.0±2.9	77.6±0.6	75.0±0.2	77.9±0.6 [↑]	62.5±0.2 [†]

		Red	ıding	Natural L	Natural Language Inference (NLI)			
	MultiRC	BoolQ	AGNews	Avg.	MNLI-m	MNLI-mm	Avg.	
	f1	acc	acc	Avg.	acc	acc	71, 8.	
Zeroshot	57.1 ± 0.0	54.6 ± 0.0	38.4 ± 0.0	50.0 ± 0.0	35.2 ± 0.0	36.4 ± 0.0	35.8 ± 0.0	
Random	57.7 ± 2.5	54.8 ± 6.7	25.8 ± 1.1	46.1 ± 1.2	34.2 ± 3.0	34.9 ± 3.9	34.6 ± 1.6	
BM25	46.5 ± 0.0	60.3 ± 0.0	81.7 ± 0.0	62.8 ± 0.0	35.3 ± 0.0	35.6 ± 0.0	35.5 ± 0.0	
SBERT	49.3 ± 0.0	58.1 ± 0.0	84.7 ± 0.0	64.0 ± 0.0	37.3 ± 0.0	37.3 ± 0.0	37.3 ± 0.0	
UDR	55.3 ± 3.1	54.6 ± 1.9	88.5 ± 1.0	66.1 ± 0.9	62.7 ± 1.5	65.0 ± 1.3	63.8 ± 1.4	
UPRISE	55.4 ± 0.2	61.5 ± 0.1	90.6 ± 0.8	69.2 ± 0.1	68.5 ± 0.1	70.3 ± 0.3	69.4 ± 0.2	
Se^2	47.1 ± 3.3	64.1 ± 2.2	90.7 ± 0.3	$\overline{67.3\pm0.7}$	69.4 ± 0.2	70.4 ± 0.1	69.9 ± 0.2	
SE-DPO	61.6±0.4	66.2±1.7	90.7±0.2	$\textbf{72.8} {\pm} \textbf{0.6}^{\uparrow}$	$70.6 {\pm} 0.1$	72.0 ± 0.3	71.3±0.2 [↑]	

Demonstrating top-1 performance across 9 NLP tasks.

Diversity of Retrieved Examples

Table 3: The average textual/semantic diversity of selected ICEs, as well as the average performance when the input order of ICEs is randomized. We take the main results on *Paraphrase* as our base.

	SE-DPO	\mathbf{Se}^2	UPRISE	UDR	SBERT	BM25	Random
Textual Diversity	53.3%	49.0%	46.7%	54.3%	49.7%	46.0%	61.4%
Semantic Diversity	40.7%	39.0%	37.3%	40.3%	25.3%	29.0%	46.0%
Random order (Best of 5)	<u>78.2%</u>	73.5%	70.9%	68.4%	57.3%	58.1%	-
Random order (Worst of 5)	<u>77.1%</u>	72.5%	68.6%	66.3%	55.1%	57.0%	

Better trades off diversity with ICL utility and successfully retrieves diverse yet useful ICEs.

Transferability

Table 4: Transferability on shot number and model size. The average performance of *Paraphrase*.

Inference Model	Method	1-shot	3-shot	6-shot	9-shot	12-shot	15-shot	Average
	BM25	57.6	58.5	58.8	58.7	59.3	60.1	58.8
GPT-2-XL-1.5B	SBERT	57.9	57.5	59.0	59.6	58.6	58.3	58.5
(0-shot=39.6)	UPRISE	69.2	69.4	69.8	69.8	70.0	70.2	69.7
(0-81101=39.0)	Se^2	73.9	72.9	72.9	72.8	72.8	72.7	73.0
	SeDPO	75.0	78.9	79.5	79.2	79.0	79.2	78.5
n en	BM25	57.1	57.2	58.9	59.5	59.0	59.4	58.5
CDT No. 2.7D	SBERT	56.6	56.0	59.4	58.9	59.8	58.4	58.2
GPT-Neo-2.7B	UPRISE	69.4	69.7	69.5	69.2	69.2	69.3	69.4
(0-shot=46.7)	Se^2	73.5	73.2	73.1	73.0	72.8	72.6	73.0
	SeDPO	77.6	77.9	78.0	77.9	78.2	78.1	78.0
	BM25	68.6	73.2	74.7	75.1	75.6	76.6	74.0
Llama3-8B-Instruct	SBERT	68.3	73.0	73.4	75.1	75.4	76.1	73.5
	UPRISE	70.9	75.3	76.4	76.6	76.9	77.0	75.5
(0-shot=56.4)	Se^2	71.9	76.7	78.0	78.0	77.9	77.9	76.7
	SeDPO	71.9	77.4	78.5	79.3	80.2	80.3	77.9
	BM25	78.4	80.7	82.2	81.7	81.8	82.2	81.2
I lama 2 2 70D	SBERT	78.3	80.3	81.2	81.7	81.7	82.7	81.1
Llama3.3-70B	UPRISE	77.3	80.2	81.3	80.5	80.8	81.3	80.2
(0-shot=67.6)	Se^2	77.9	81.0	82.0	82.2	81.9	81.9	81.1
	SeDPO	78.6	81.0	82.3	82.9	83.2	83.2	81.9

Showing transferability on LLMs scales and shot number.

