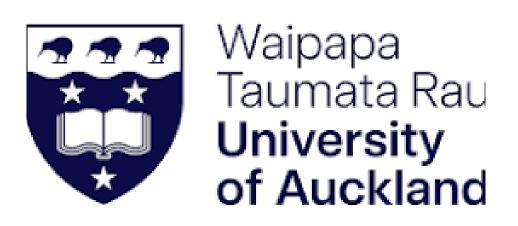
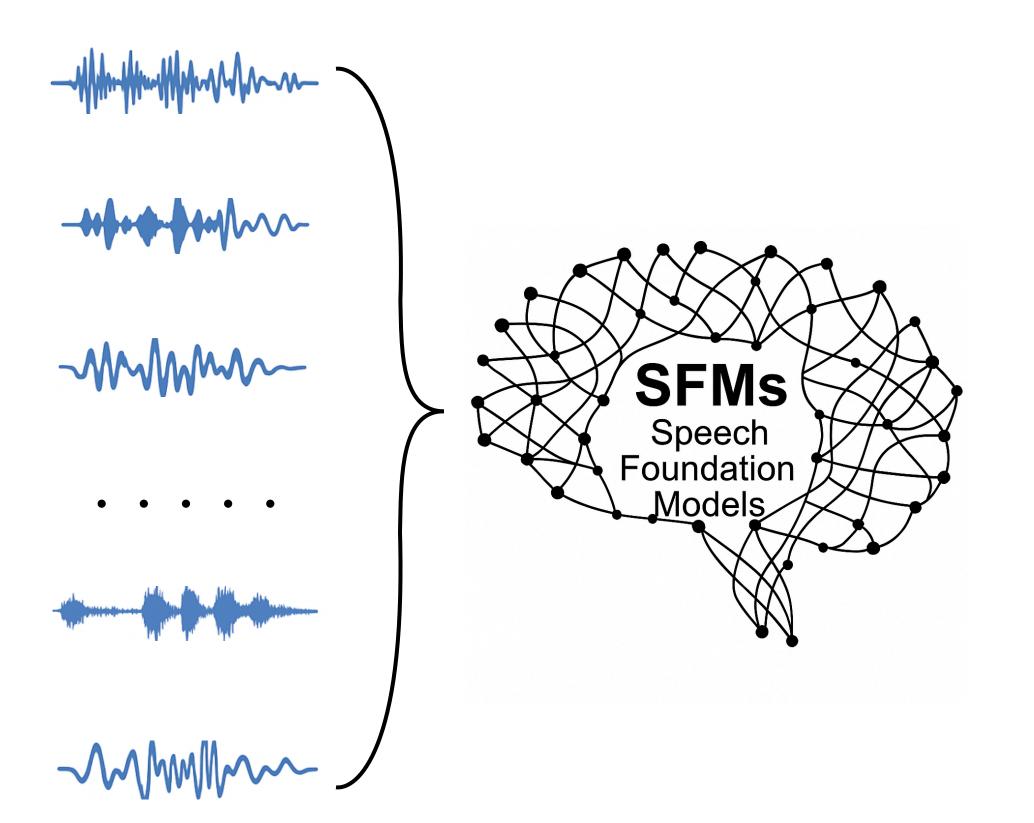
E-BATS: Efficient Backpropagation-Free Test-Time Adaptation for Speech Foundation Models

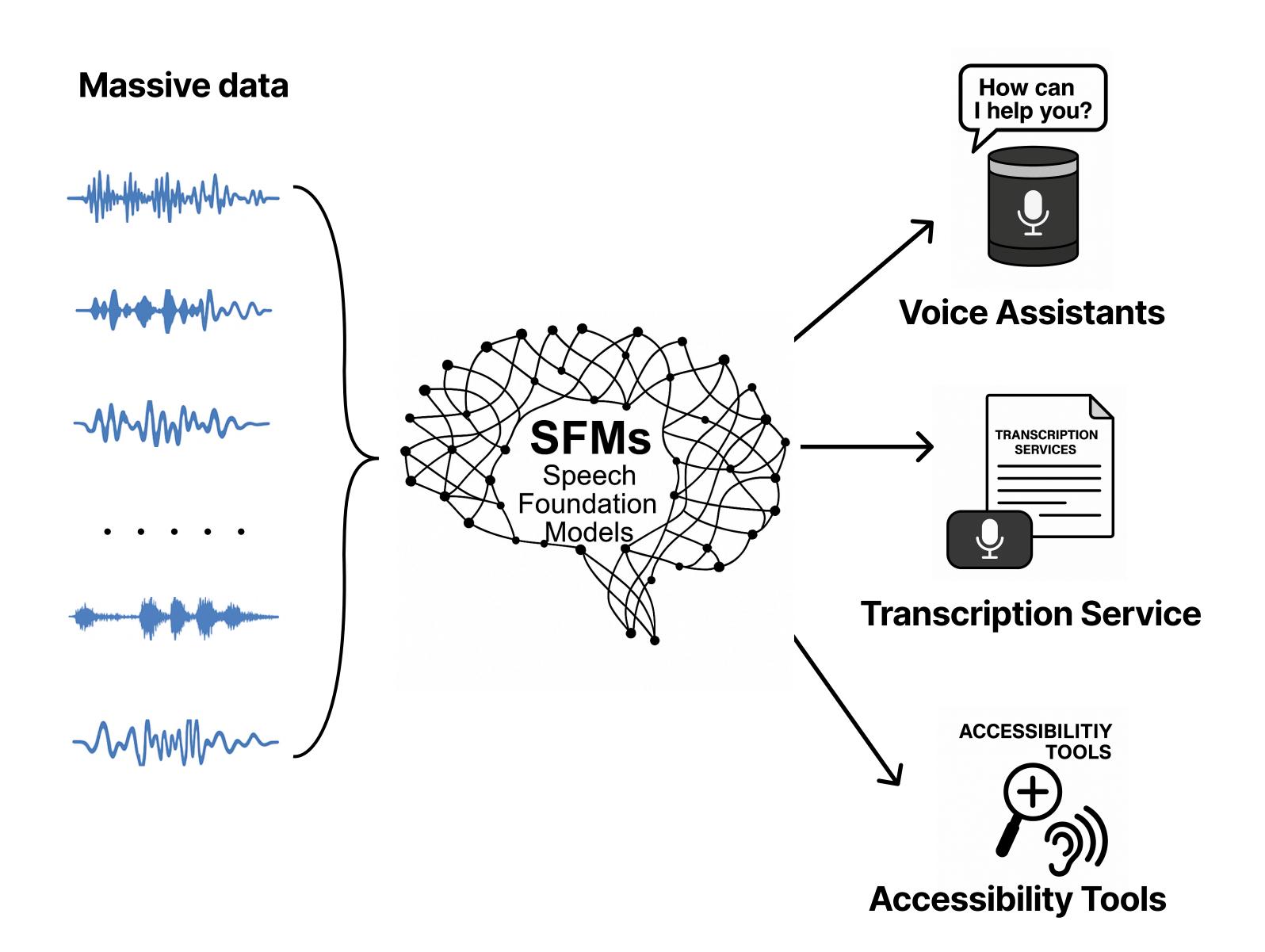
Jiaheng Dong, Hong Jia, Soumyamjit Chatterjee, Abhirup Ghosh, James Bailey, Ting Dang

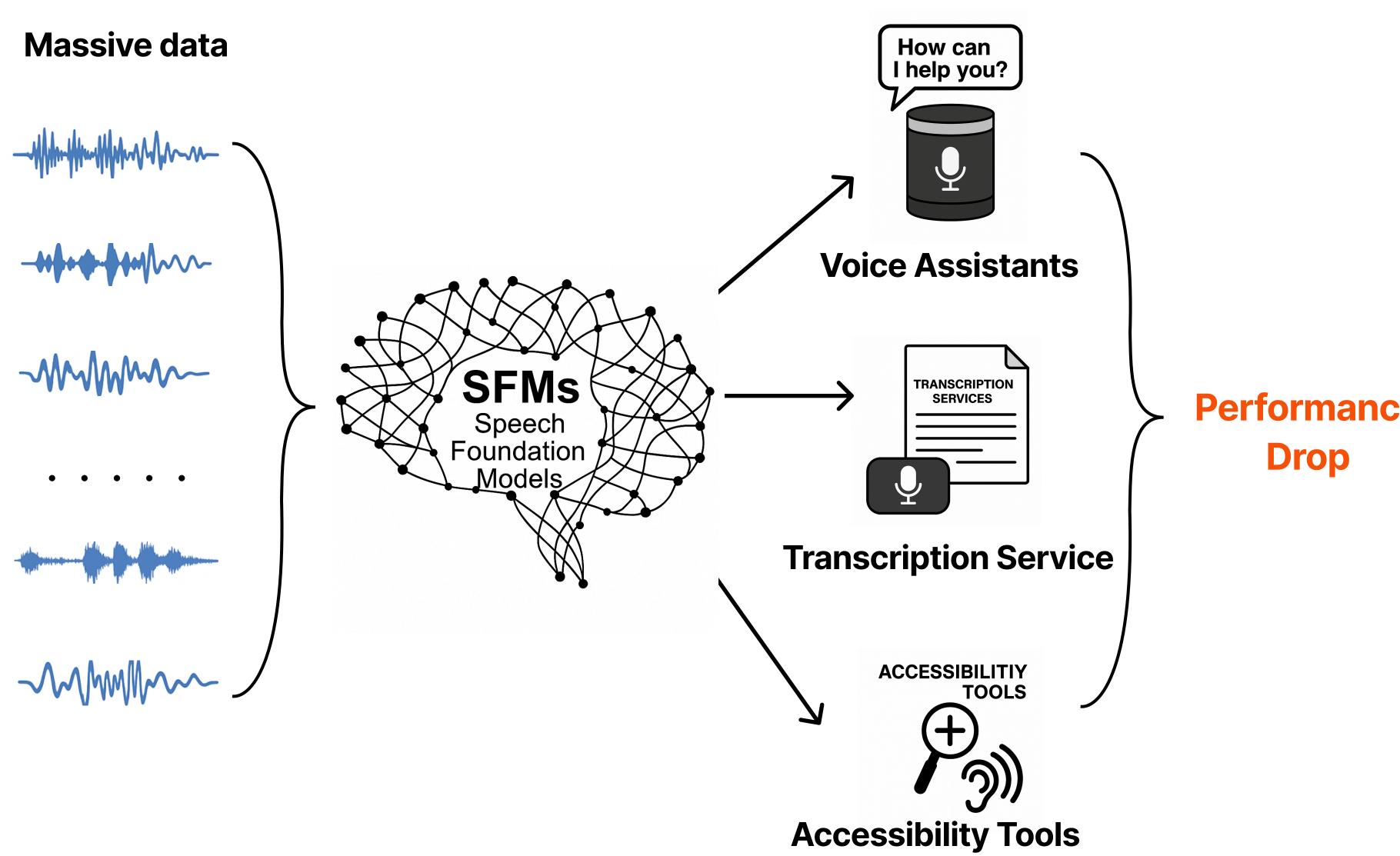
NeurlPS 2025



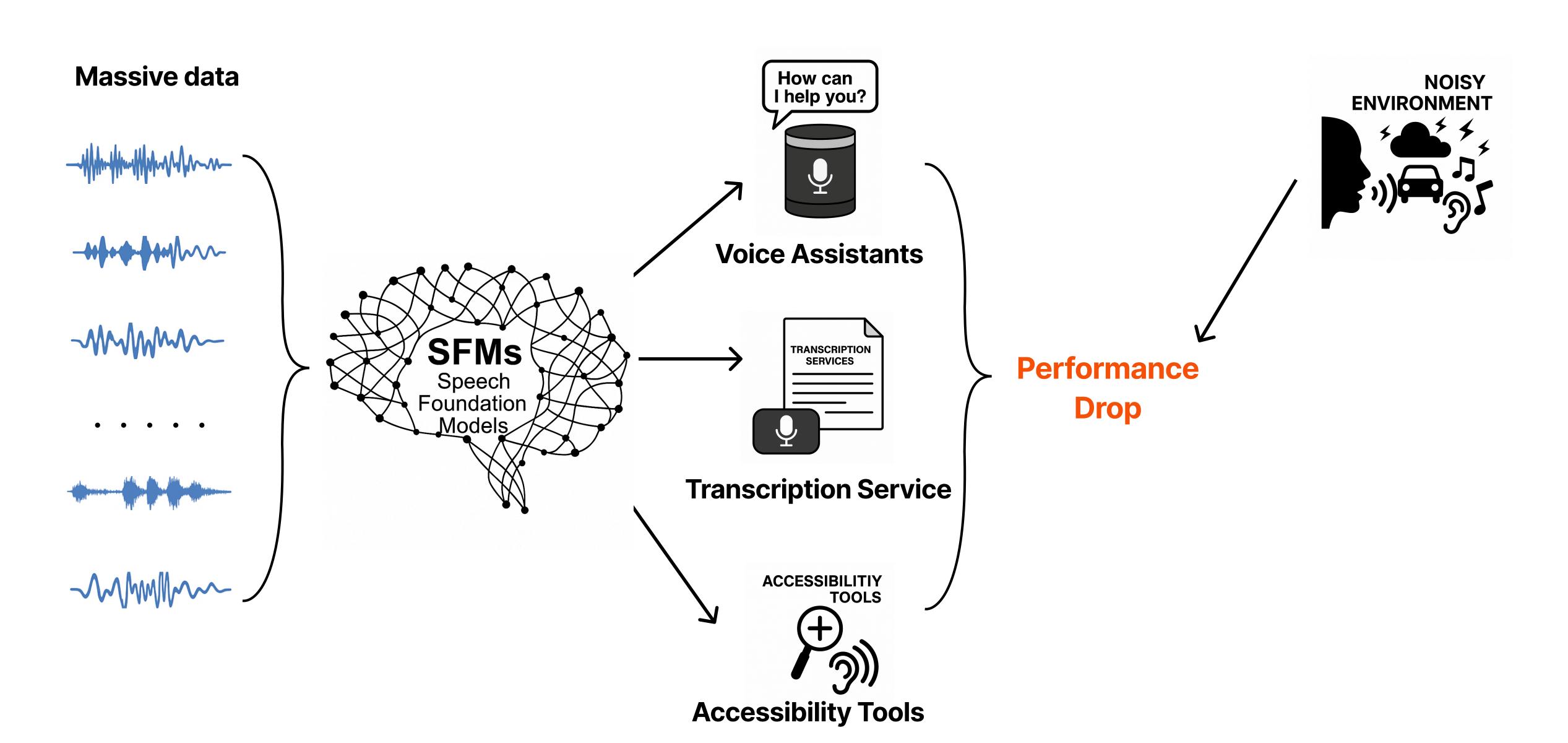
Massive data

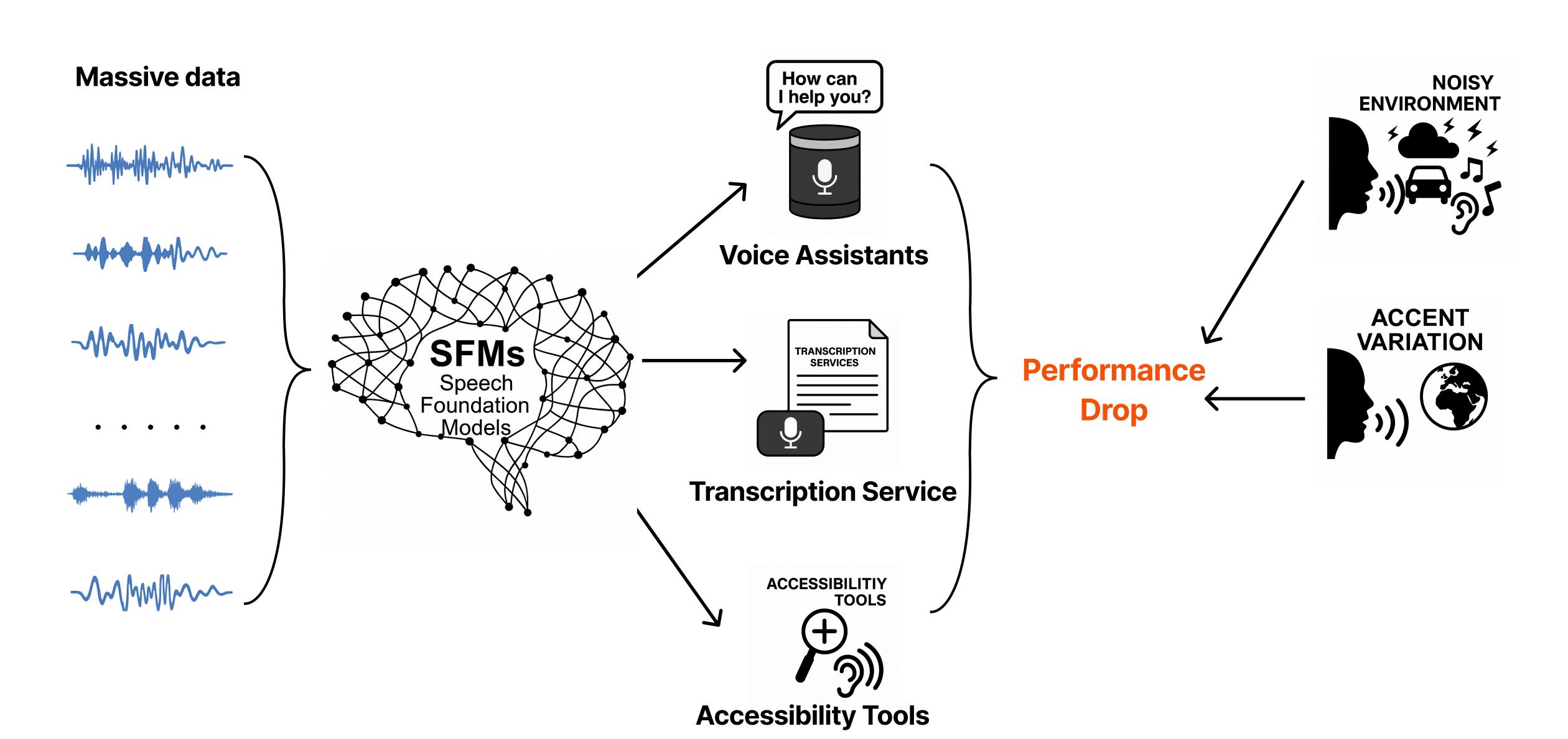


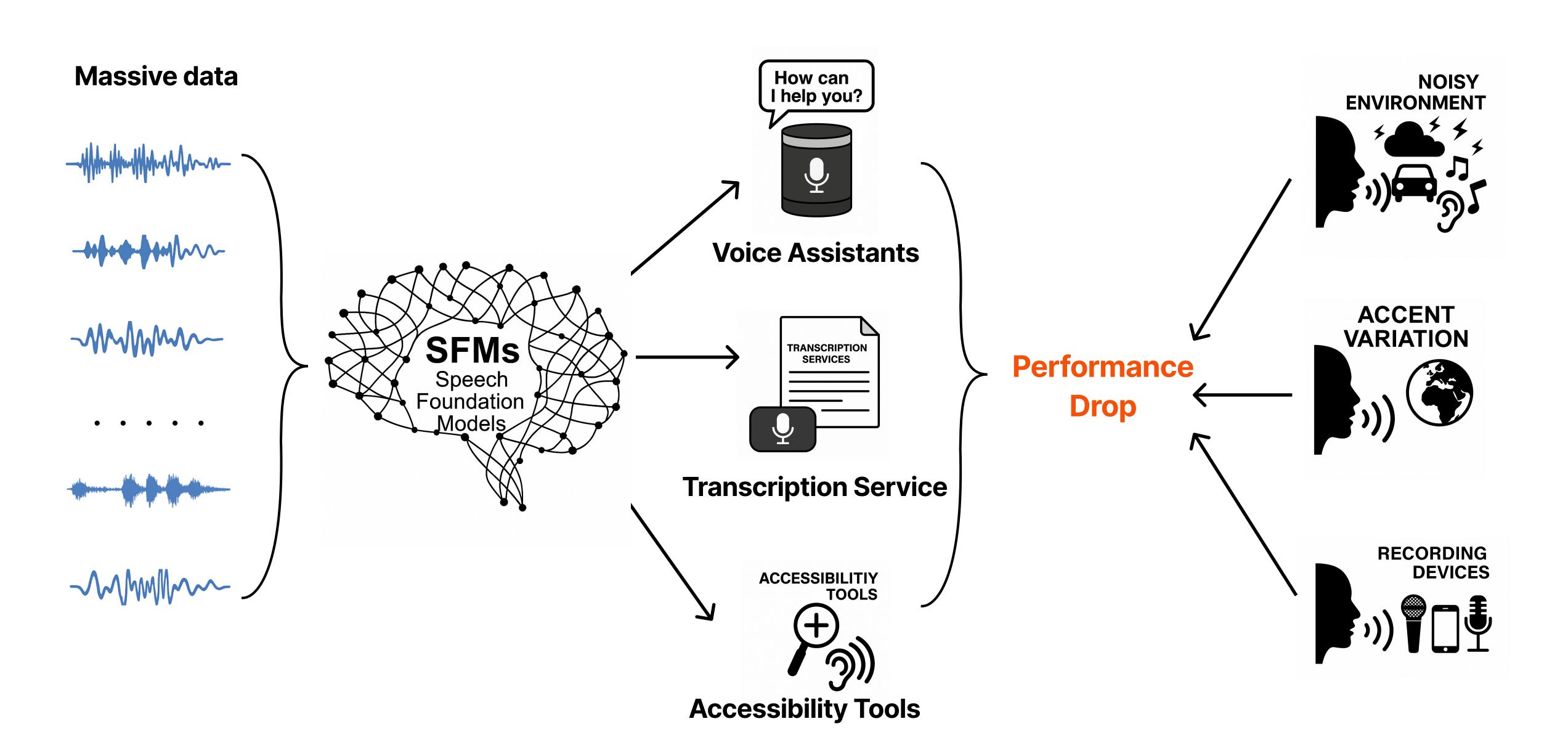




Performance

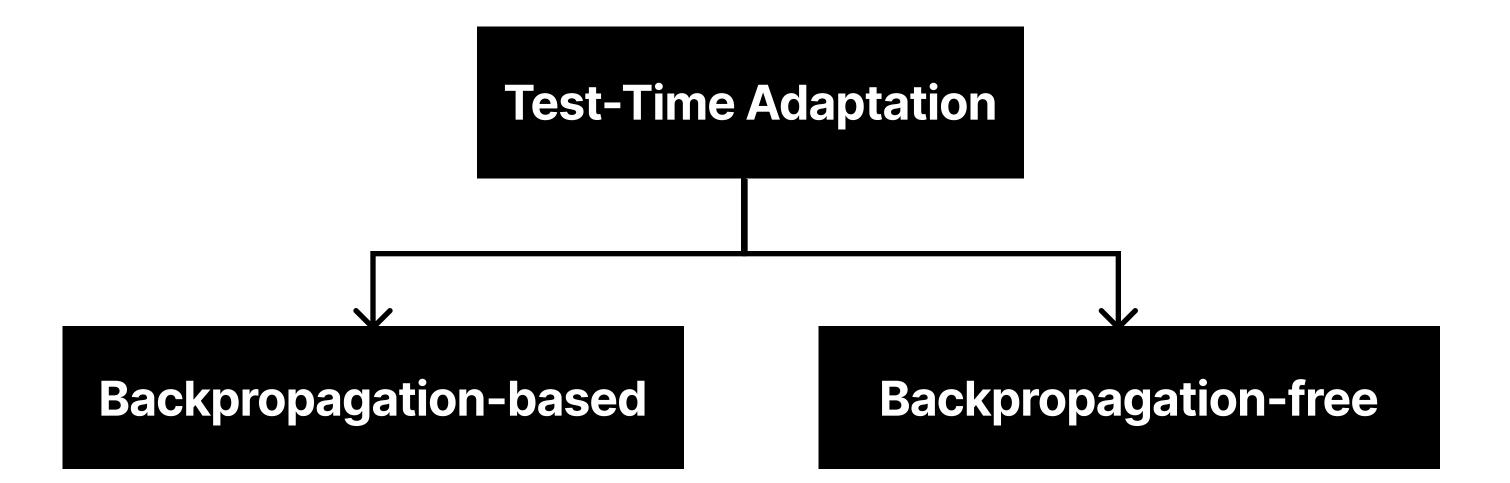




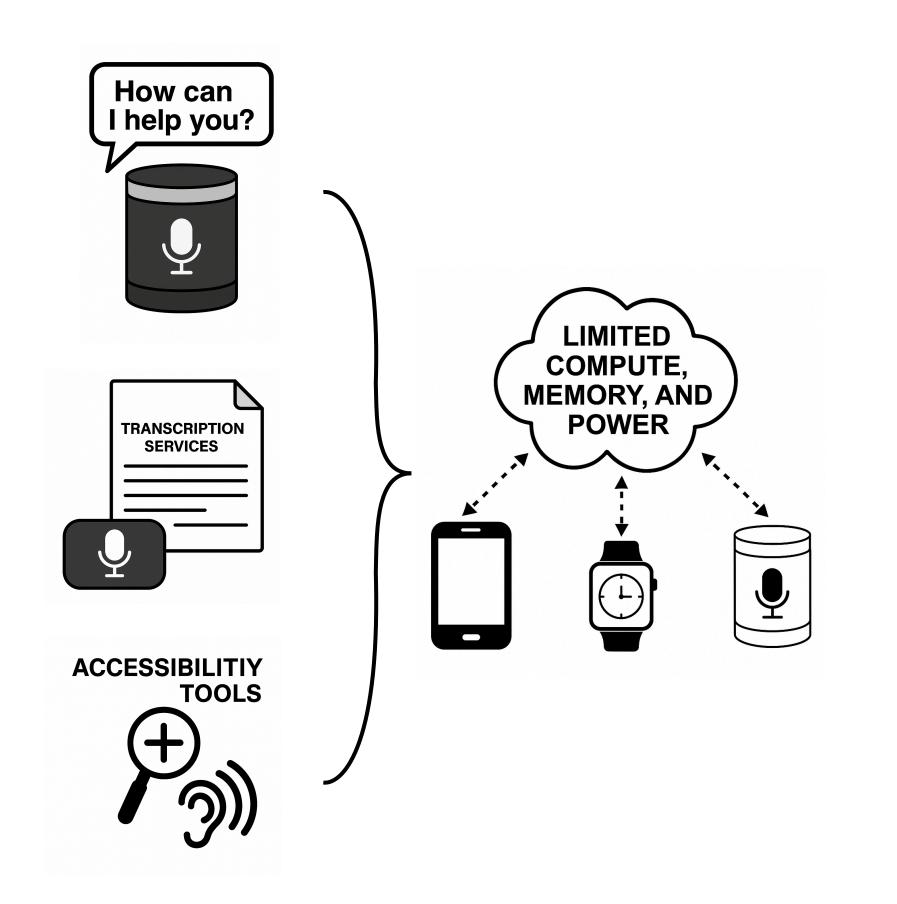


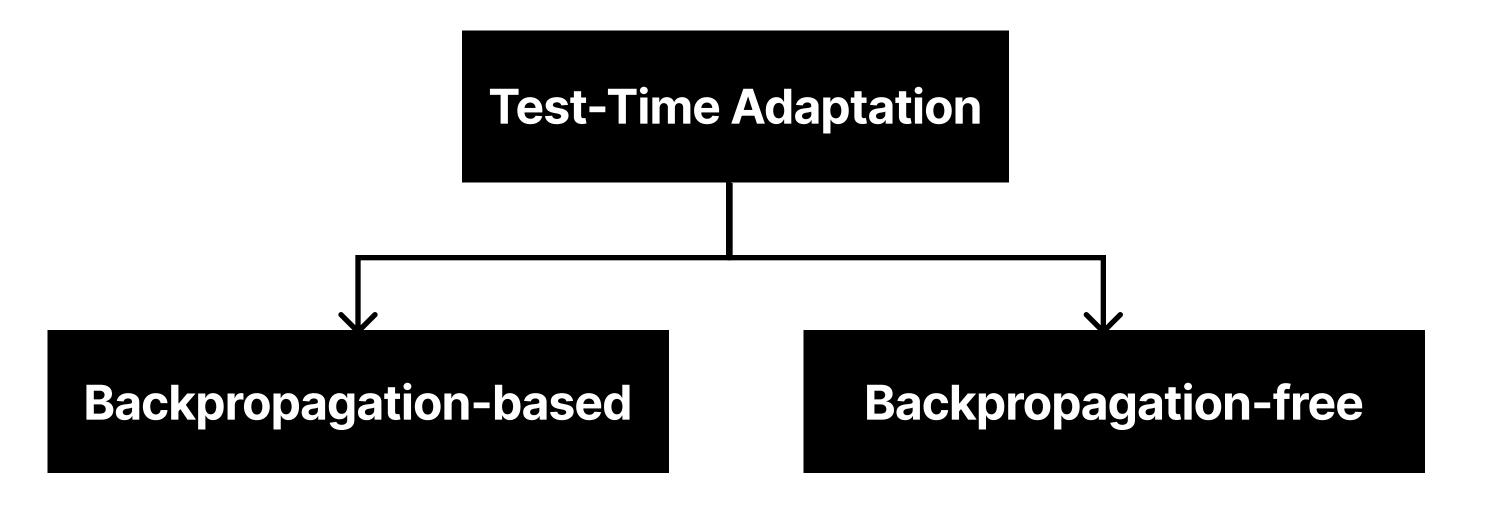
- SFMs need to be updated after deployment
- Only unlabelled real world data are available
- Test-Time Adaptation (TTA) is an attractive solution

- SFMs need to be updated after deployment
- Only unlabelled real world data are available
- Test-Time Adaptation (TTA) is an attractive solution

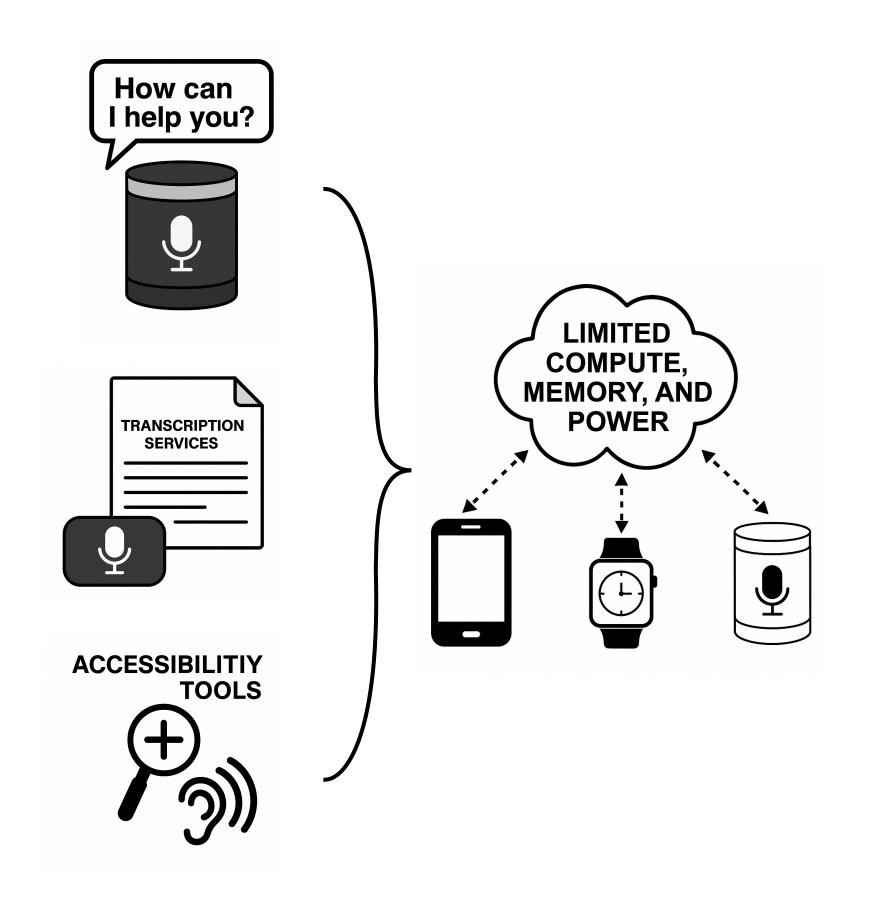


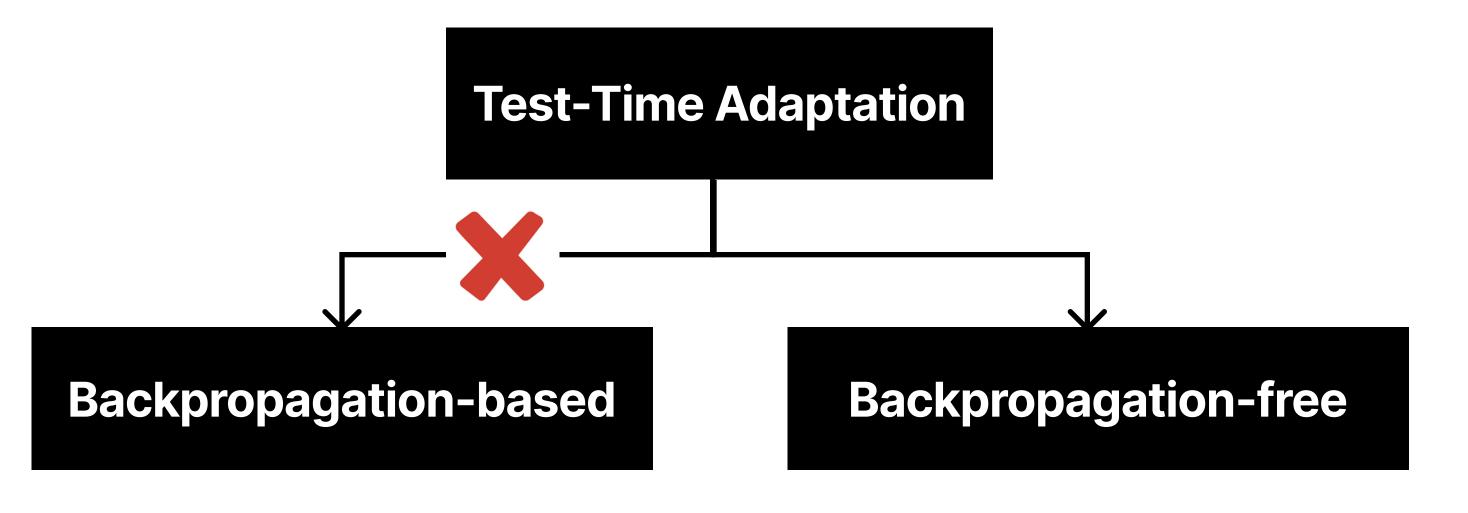
- SFMs need to be updated after deployment
- Only unlabelled real world data are available
- Test-Time Adaptation (TTA) is an attractive solution





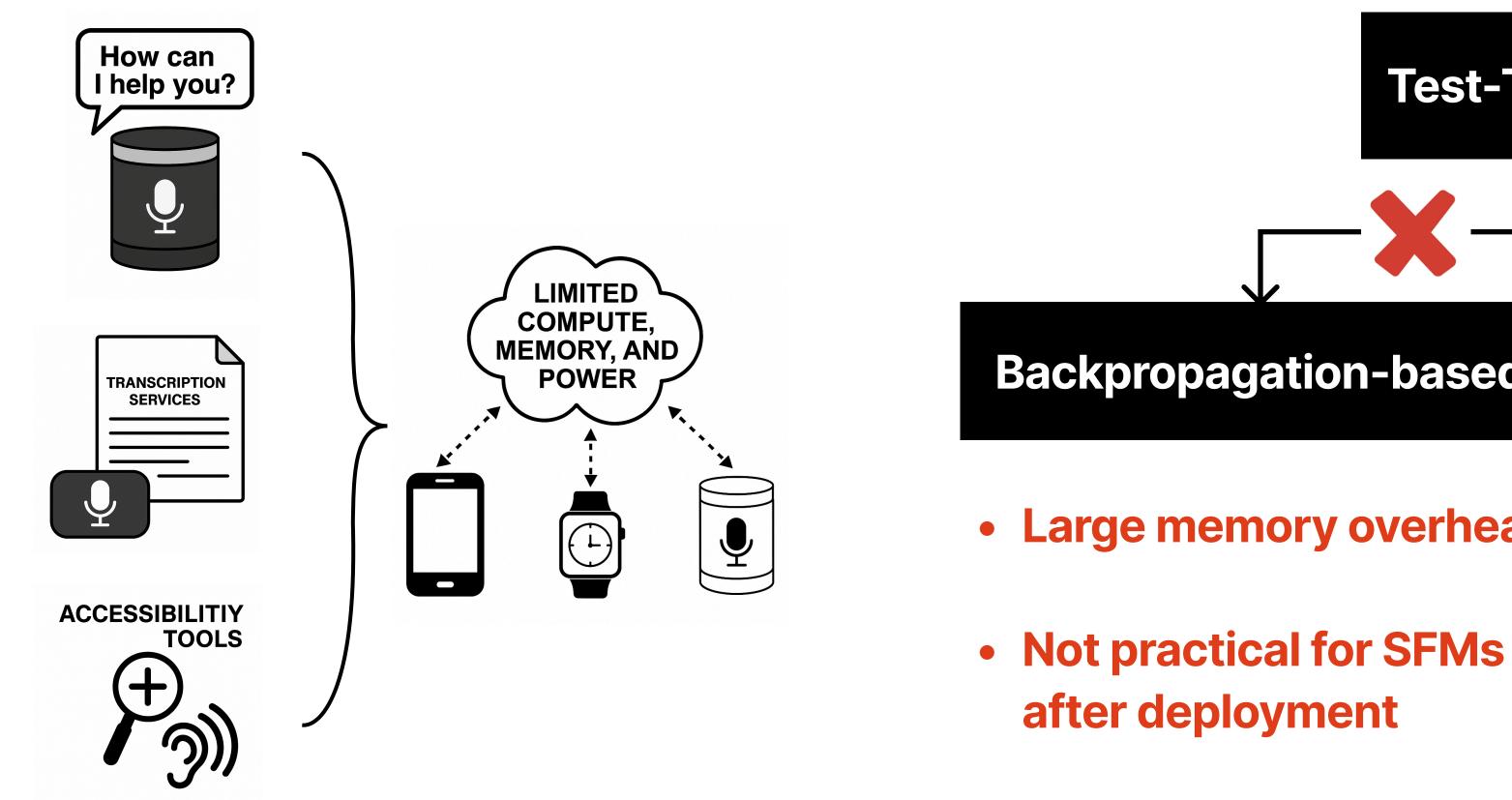
- SFMs need to be updated after deployment
- Only unlabelled real world data are available
- Test-Time Adaptation (TTA) is an attractive solution

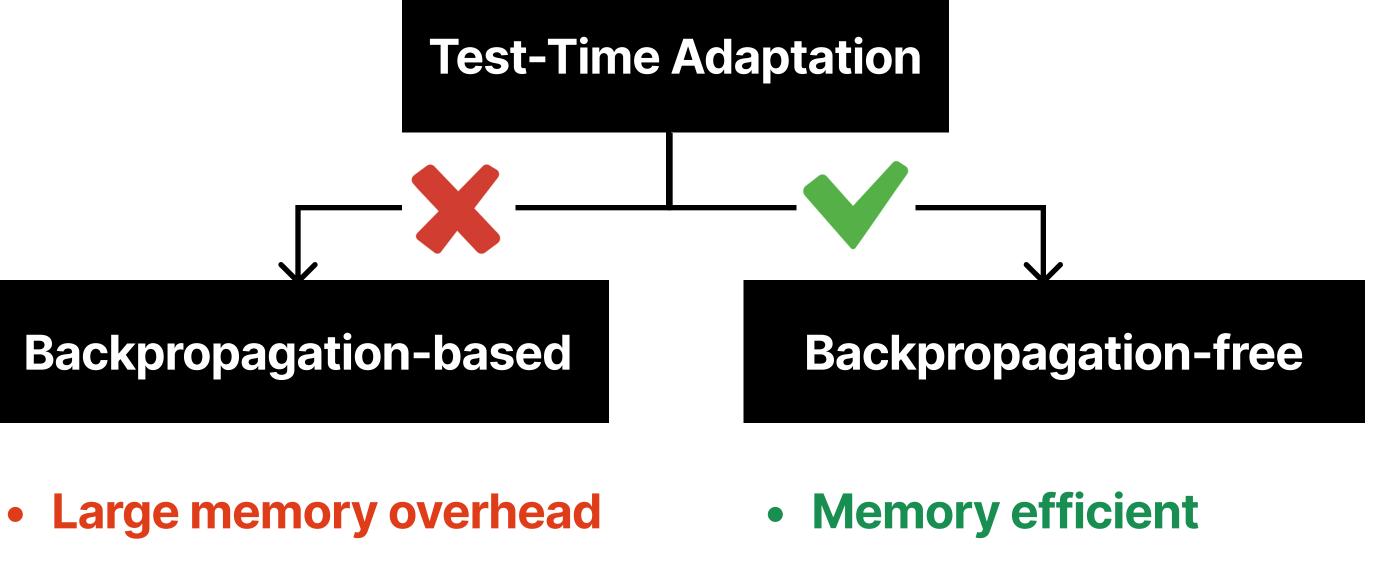




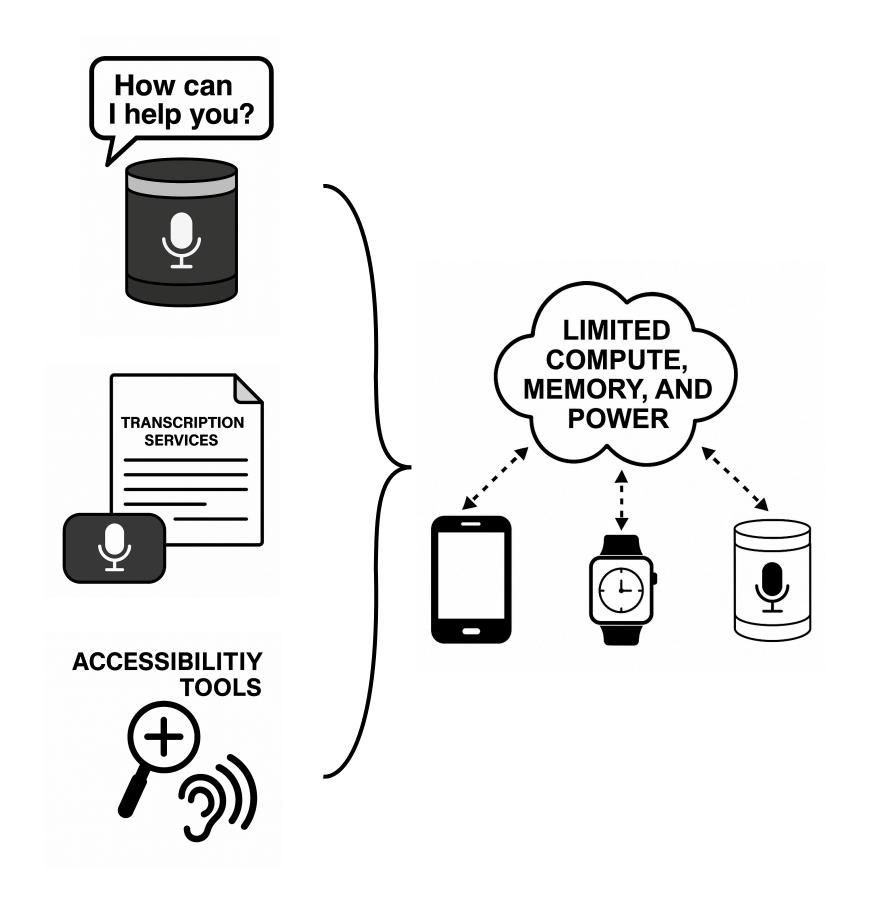
- Large memory overhead
- Not practical for SFMs after deployment

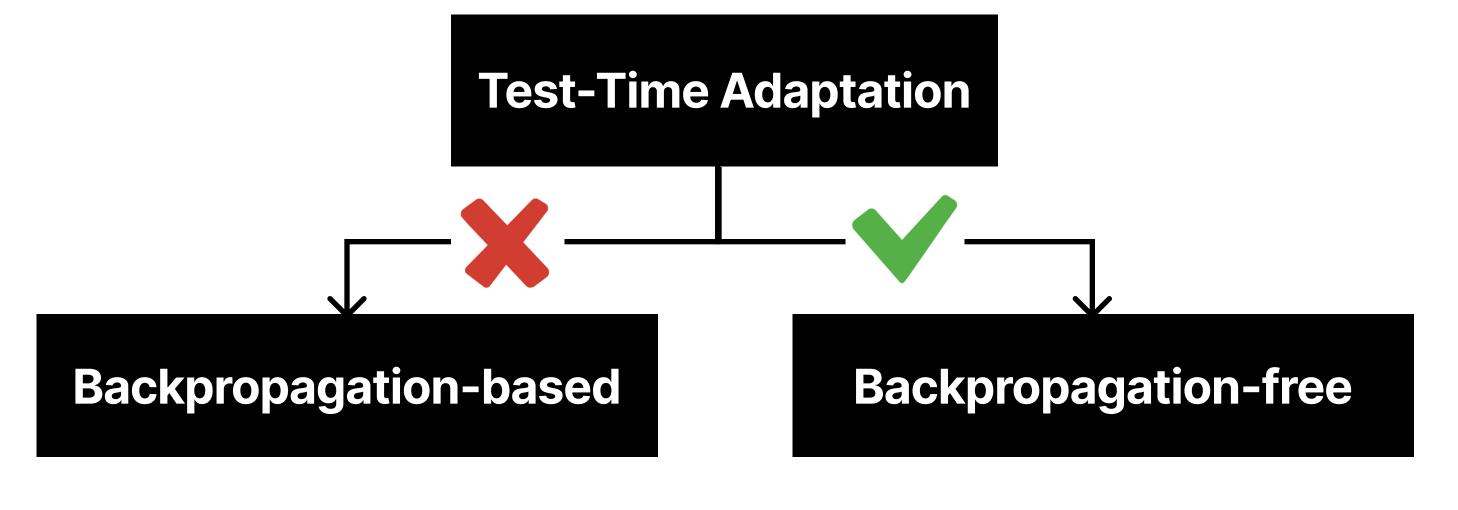
- SFMs need to be updated after deployment
- Only unlabelled real world data are available
- Test-Time Adaptation (TTA) is an attractive solution





- SFMs need to be updated after deployment
- Only unlabelled real world data are available
- Test-Time Adaptation (TTA) is an attractive solution





- Large memory overhead
- Not practical for SFMs after deployment

- Memory efficient
- Model architecture & task differences pose unique challenges for SFMs

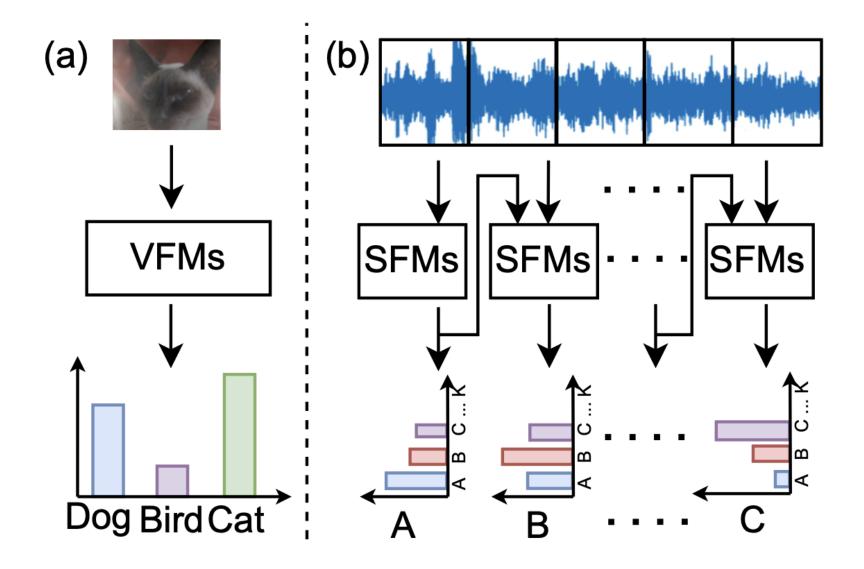
Model architecture differences:

- No batch normalization layers in SFMs
- SFMs: CNN layers + Transformer layers;
 - VFMs: CNN layers or Transformer layers

Model architecture differences:

- No batch normalization layers in SFMs
- SFMs: CNN layers + Transformer layers;
 VFMs: CNN layers or Transformer layers

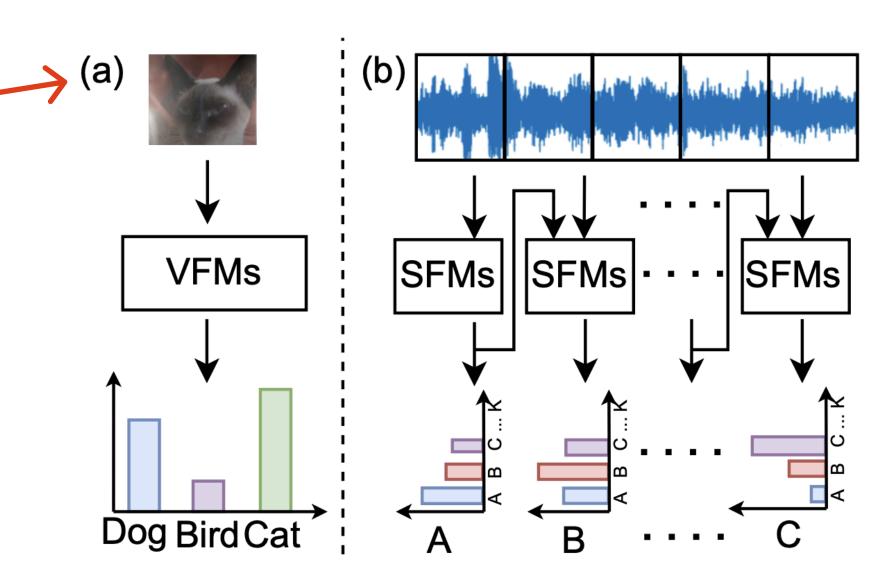
- Image classification
 - One-to-one mapping
 - Spatial perturbations of pixels
- Speech recognition
 - Sequence-to-sequence mapping
 - Dynamic, temporally varying across frames



Model architecture differences:

- No batch normalization layers in SFMs
- SFMs: CNN layers + Transformer layers;
 - **VFMs: CNN layers or Transformer layers**

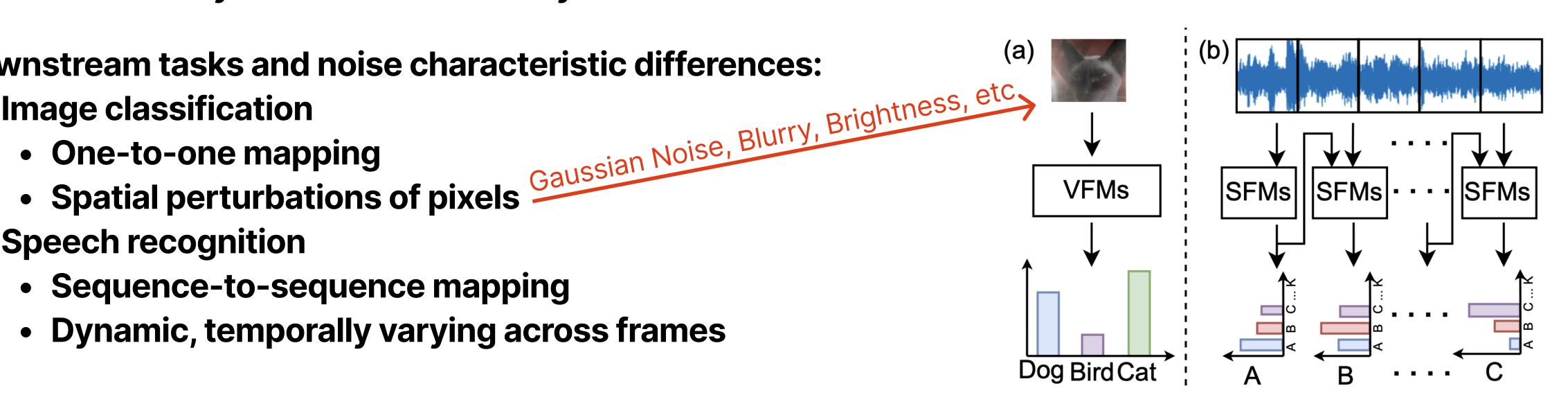
- Image classification
 - One-to-one mapping
 - Spatial perturbations of pixels
- Speech recognition
 - Sequence-to-sequence mapping
 - Dynamic, temporally varying across frames



Model architecture differences:

- No batch normalization layers in SFMs
- SFMs: CNN layers + Transformer layers;
 - **VFMs: CNN layers or Transformer layers**

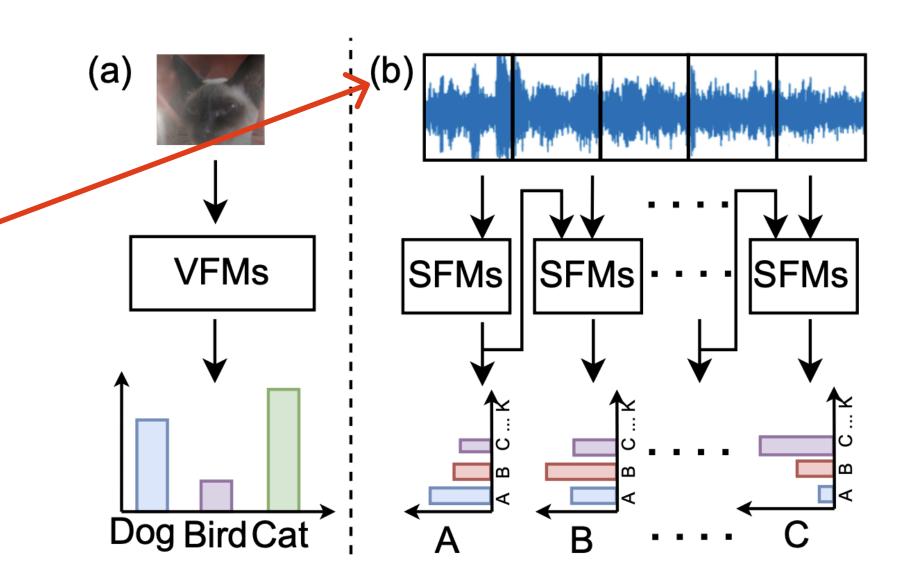
- Image classification
- Speech recognition
 - Sequence-to-sequence mapping
 - Dynamic, temporally varying across frames



Model architecture differences:

- No batch normalization layers in SFMs
- SFMs: CNN layers + Transformer layers;
 - **VFMs: CNN layers or Transformer layers**

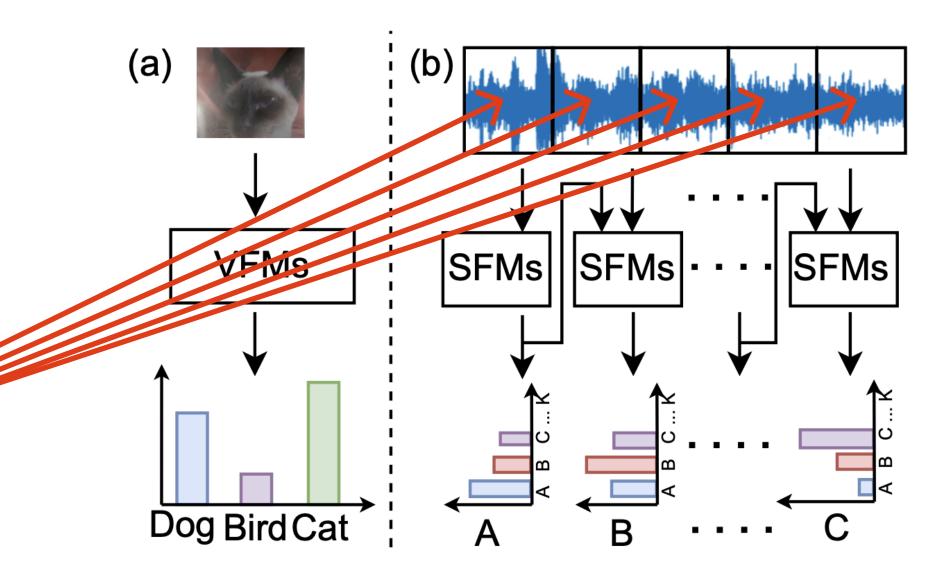
- Image classification
 - One-to-one mapping
 - Spatial perturbations of pixels
- Speech recognition
 - Sequence-to-sequence mapping
 - Dynamic, temporally varying across frames



Model architecture differences:

- No batch normalization layers in SFMs
- SFMs: CNN layers + Transformer layers;
 - **VFMs: CNN layers or Transformer layers**

- Image classification
 - One-to-one mapping
 - Spatial perturbations of pixels
- Speech recognition
 - Sequence-to-sequence mapping
 - Dynamic, temporally varying across frames



Model architecture differences:

- No batch normalization layers in SFMs
- SFMs: CNN layers + Transformer layers;
 VFMs: CNN layers or Transformer layers

Downstream tasks and noise characteristic differences:

- Image classification
 - One-to-one mapping
 - Spatial perturbations of pixels
- Speech recognition
 - Sequence-to-sequence mapping
 - Dynamic, temporally varying across frames

Adaptation batch size differences:

- Current TTA depend on large batch size for reliable adaptation
- TTA in speech task need to process one utterance at a time

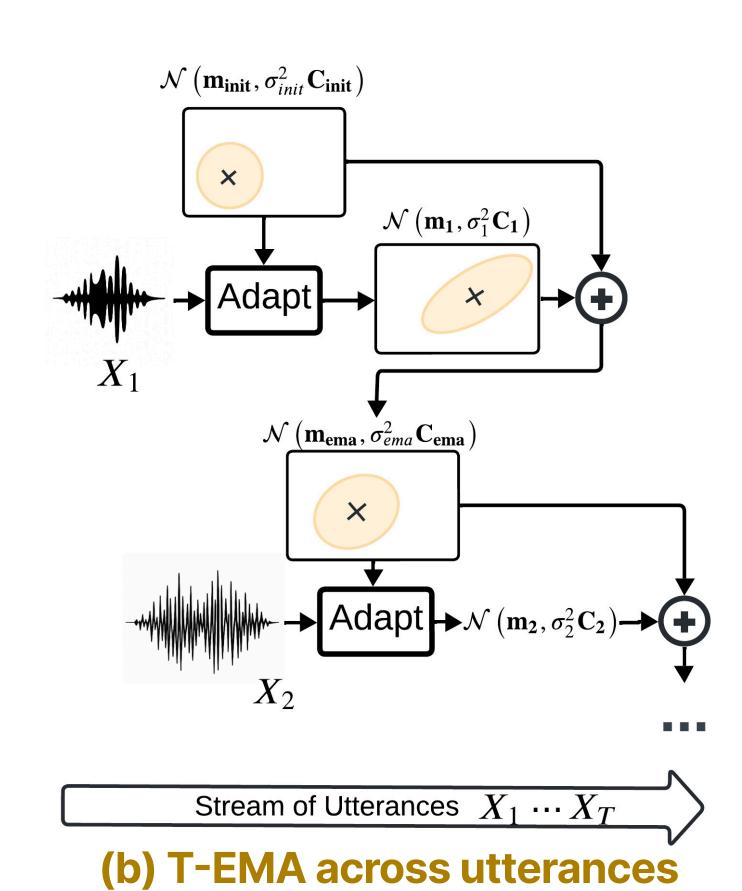
E-BATS

First efficient, backpropagation-free, and robust TTA for SFMs:

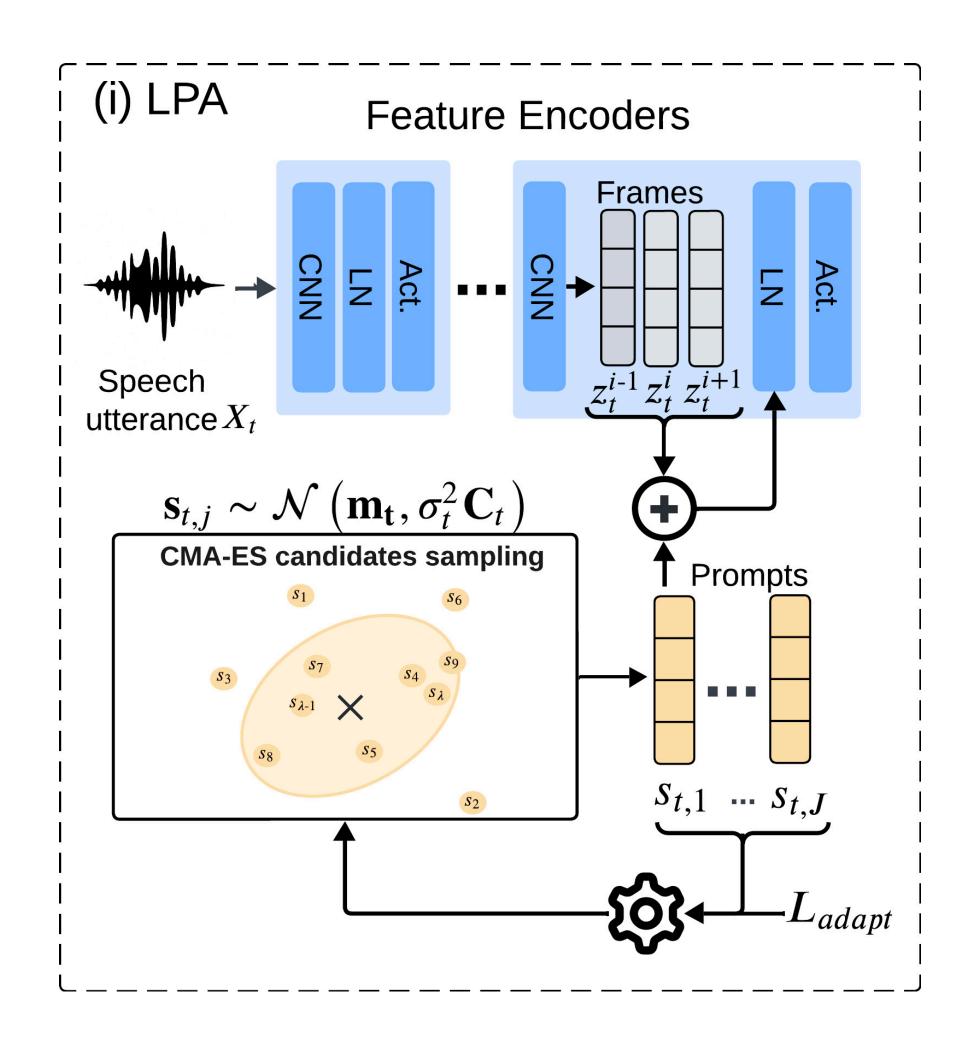
- Lightweight Prompt Adaptation (LPA)
- Multi-scale Loss Function
- Test-time Exponential Moving Average (T-EMA) across utterances

Lightweight Prompt Adaptation Multi-scale Loss Design (i) LPA **Precollected Source Stats** (ii) Multi-scale Feature Encoders (Token-level) Loss Function! Frames **Tokenwise Feature** L_{token} Alignment Speech Projection Encoder utterance X_t $\mathbf{s}_{t,j} \sim \mathcal{N}\left(\mathbf{m_t}, \sigma_t^2 \mathbf{C}_t\right)$ CMA-ES candidates sampling **Prompts Utterance Feature** $-L_{utt}$ ϕ_{ema} Alignment $S_{t,1} \dots S_{t,J}$ **Precollected Source Stats** After K^{th} iter \blacktriangledown T-EMA (Utterance-level)

(a) Single-utterance Backpropagation-free Adaptation



Lightweight Prompt Adaptation (LPA)

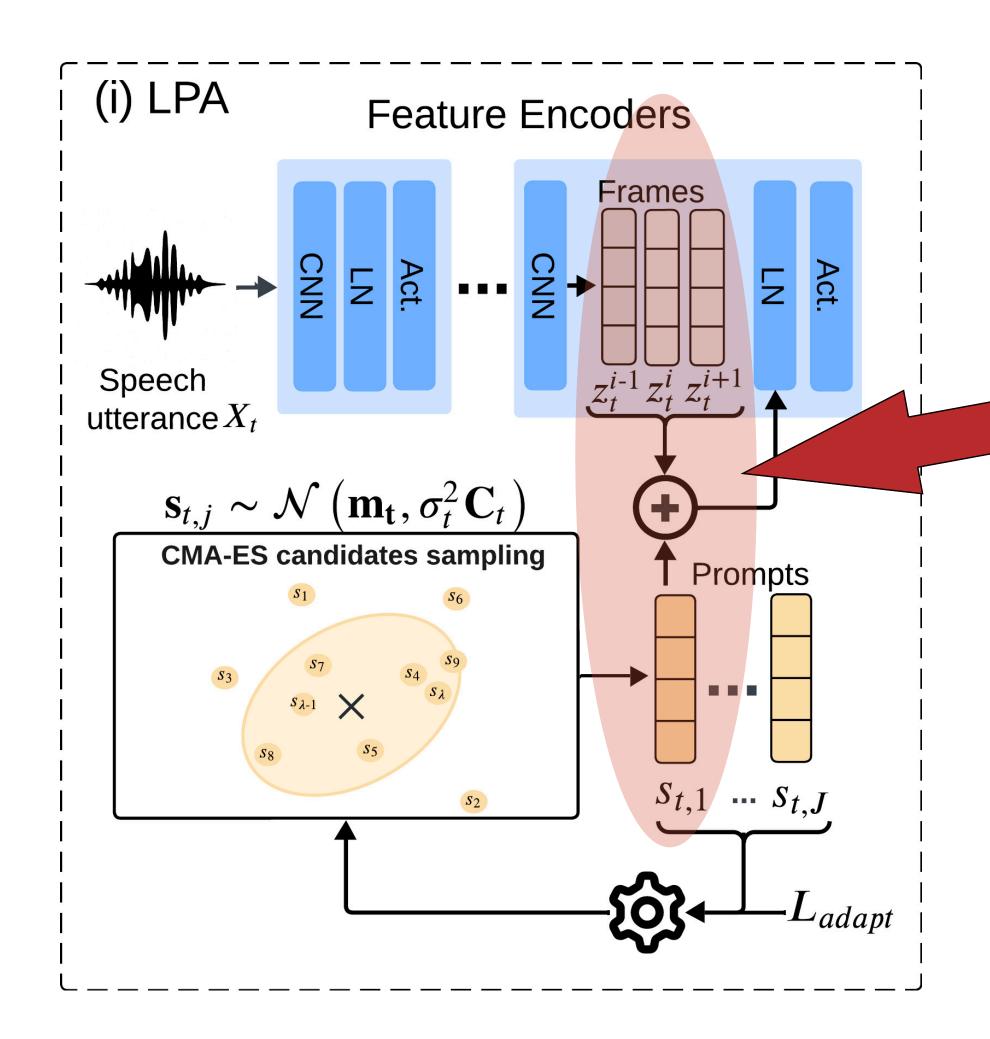


- Learning Prompts to Adapt (address mean shift)
 - Focus on Feature encoders (CNN-based part)
 - Lightweight

$$\hat{oldsymbol{Z}}_t = oldsymbol{Z}_t + oldsymbol{s}_t \cdot oldsymbol{1}_N^ op$$

$$oldsymbol{Z}_t = \left[oldsymbol{z}_t^1, \ldots, oldsymbol{z}_t^{N_t}
ight]$$

Lightweight Prompt Adaptation (LPA)

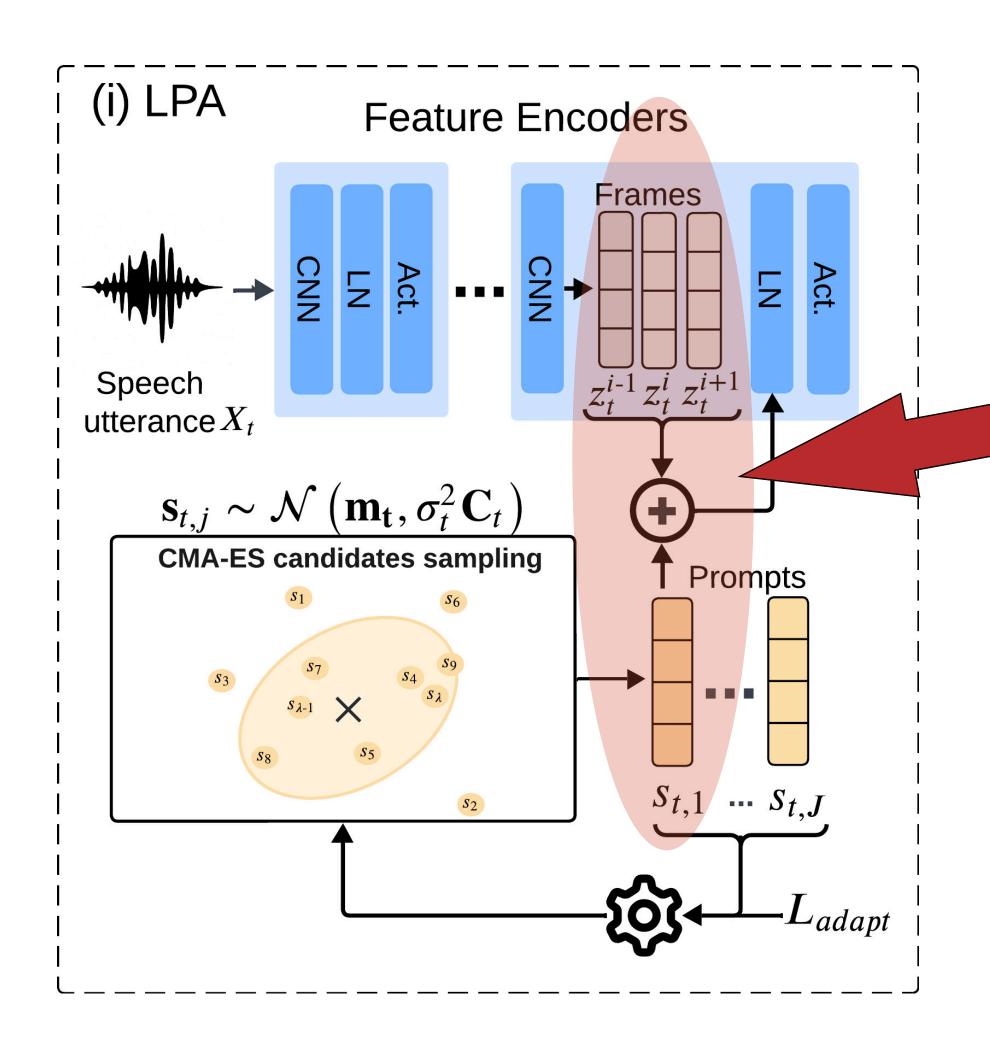


- Learning Prompts to Adapt (address mean shift)
 - Focus on Feature encoders (CNN-based part)
 - Lightweight

$$\hat{oldsymbol{Z}}_t = oldsymbol{Z}_t + oldsymbol{s}_t \cdot oldsymbol{1}_N^ op$$

$$oldsymbol{Z}_t = \left[oldsymbol{z}_t^1, \, \ldots, \, oldsymbol{z}_t^{N_t}
ight]$$

Lightweight Prompt Adaptation (LPA)



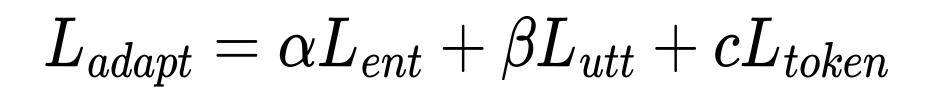
- Learning Prompts to Adapt (address mean shift)
 - Focus on Feature encoders (CNN-based part)
 - Lightweight

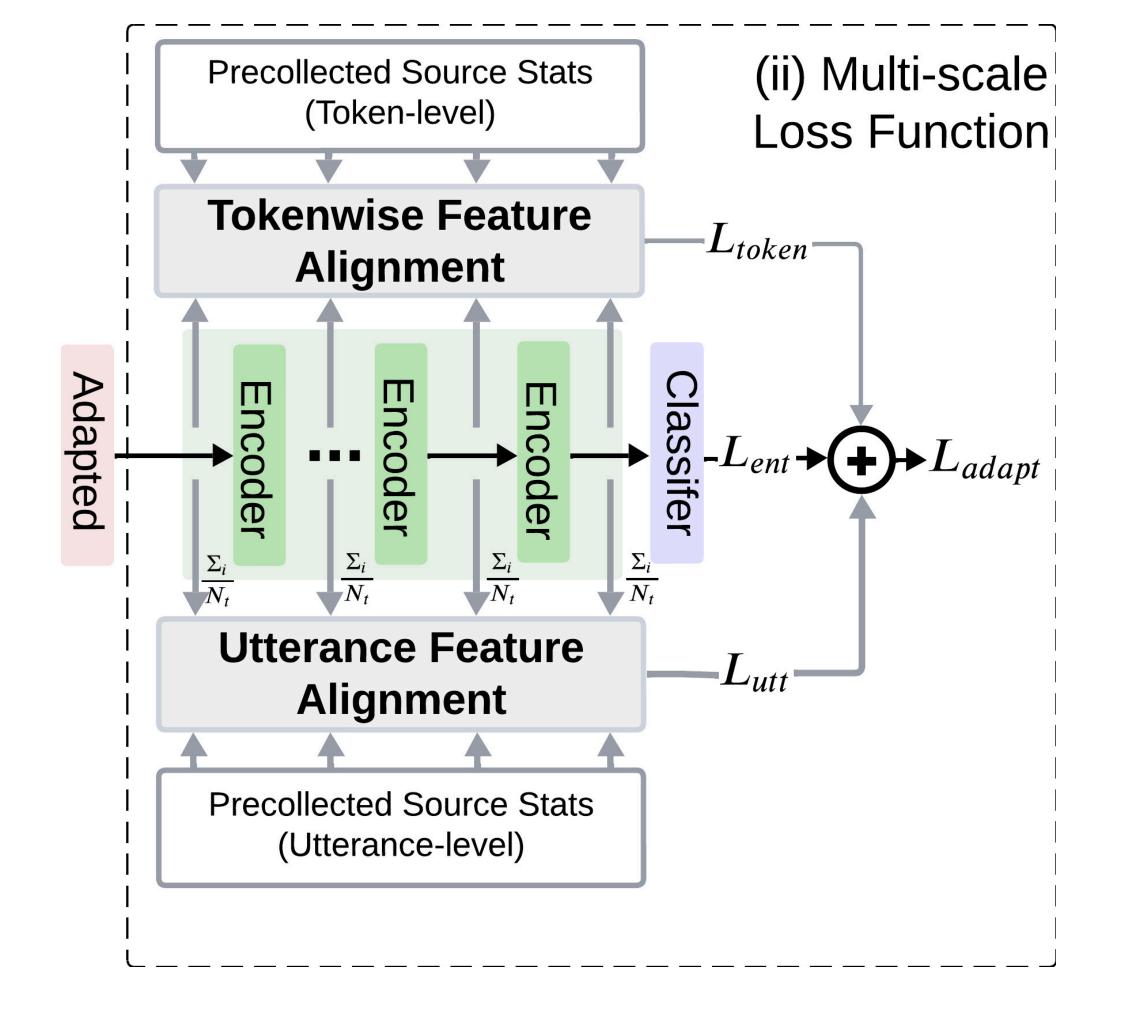
$$\hat{oldsymbol{Z}}_t = oldsymbol{Z}_t + oldsymbol{s}_t \cdot oldsymbol{1}_N^ op$$

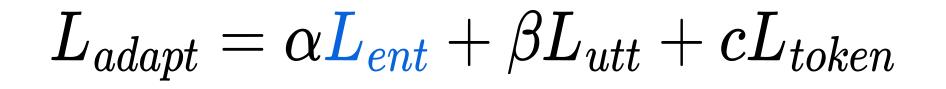
$$oldsymbol{Z}_t = \left[oldsymbol{z}_t^1, \, \ldots, \, oldsymbol{z}_t^{N_t}
ight]$$

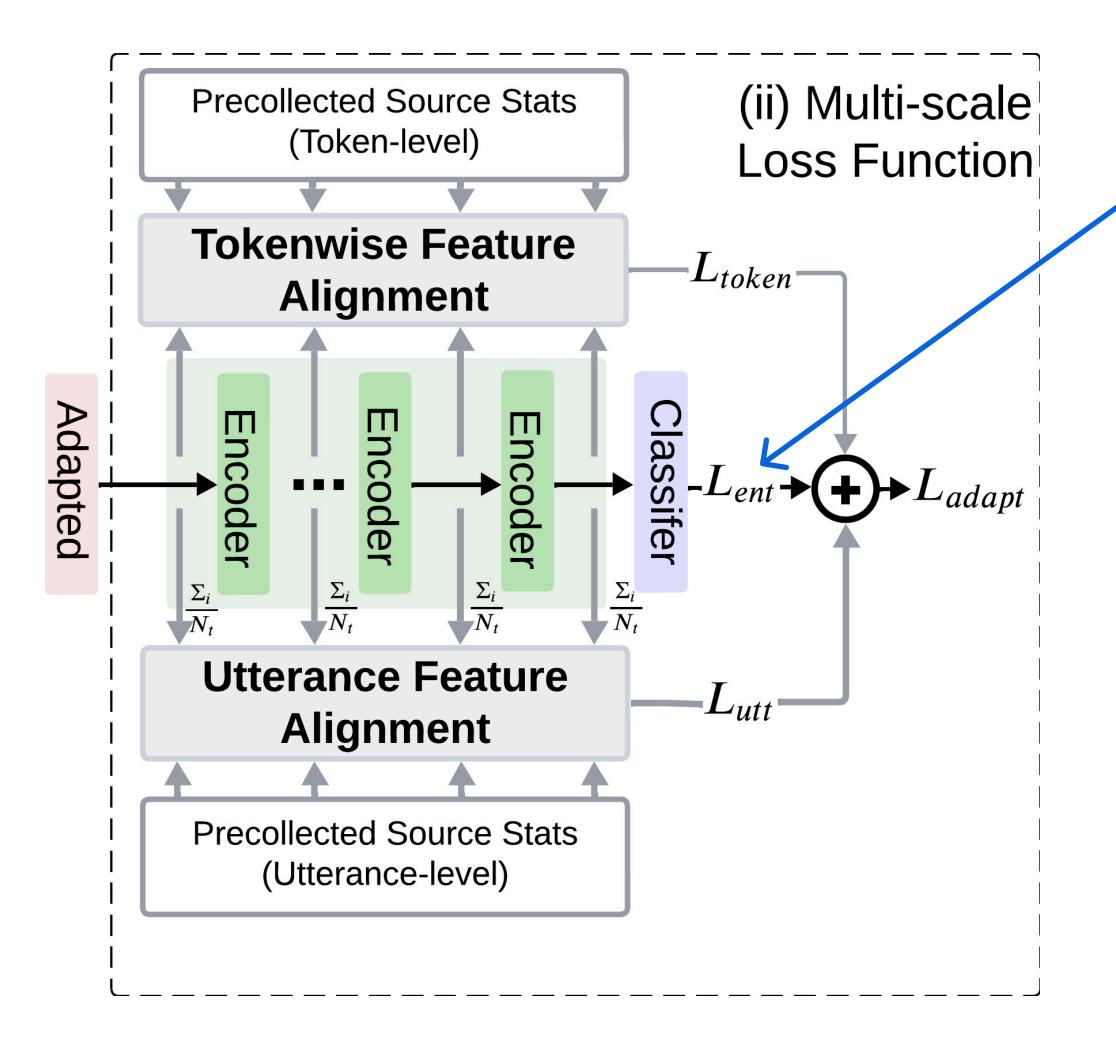
- Prompt Optimization with CMA-ES
 - Sample candidate prompt vectors
 - Update parameters with candidate prompts + Loss

$$oldsymbol{s}_t = rg\min_{oldsymbol{s}_{t,j} \in \mathbb{R}^d} L_{adapt}(oldsymbol{X}_t, oldsymbol{s}_{t,j})$$



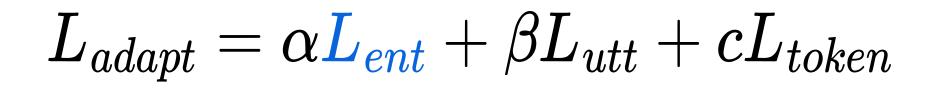


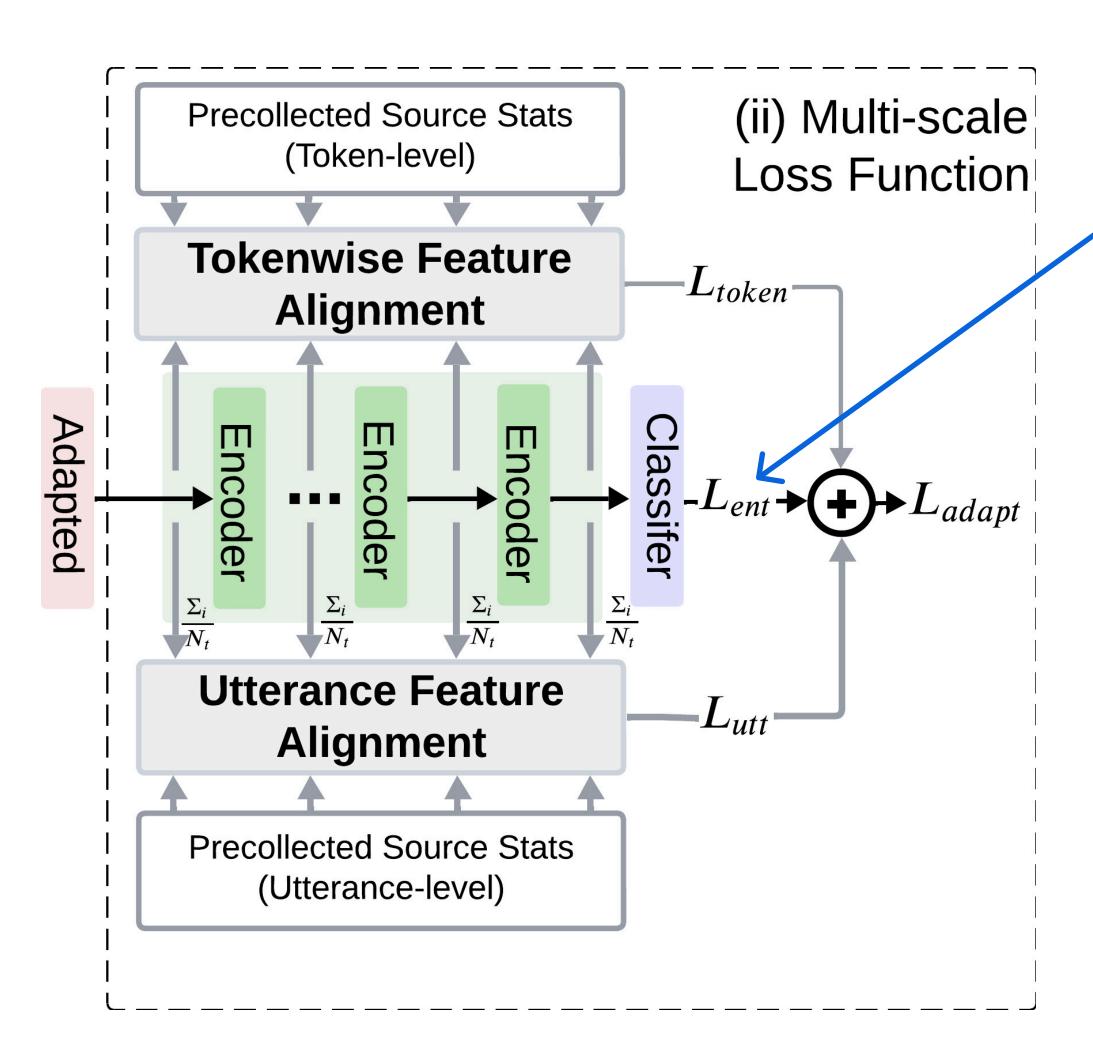




• Entropy Loss

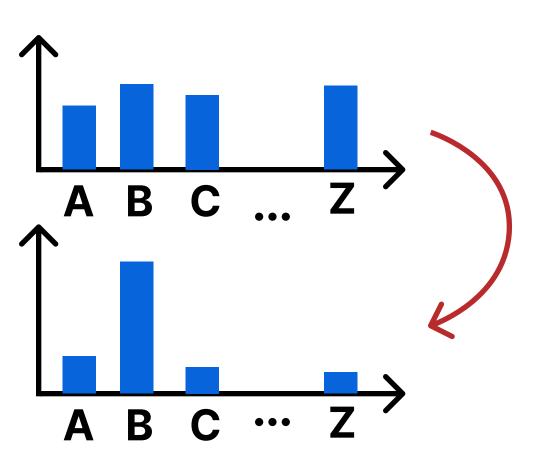
$$L_{ent} = -rac{1}{| ilde{X}_t|} \sum_{x_t^i \in ilde{X}_t} \mathcal{H}(\Theta(x_t^i))$$

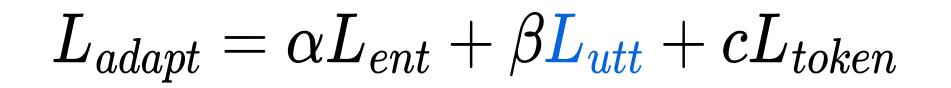


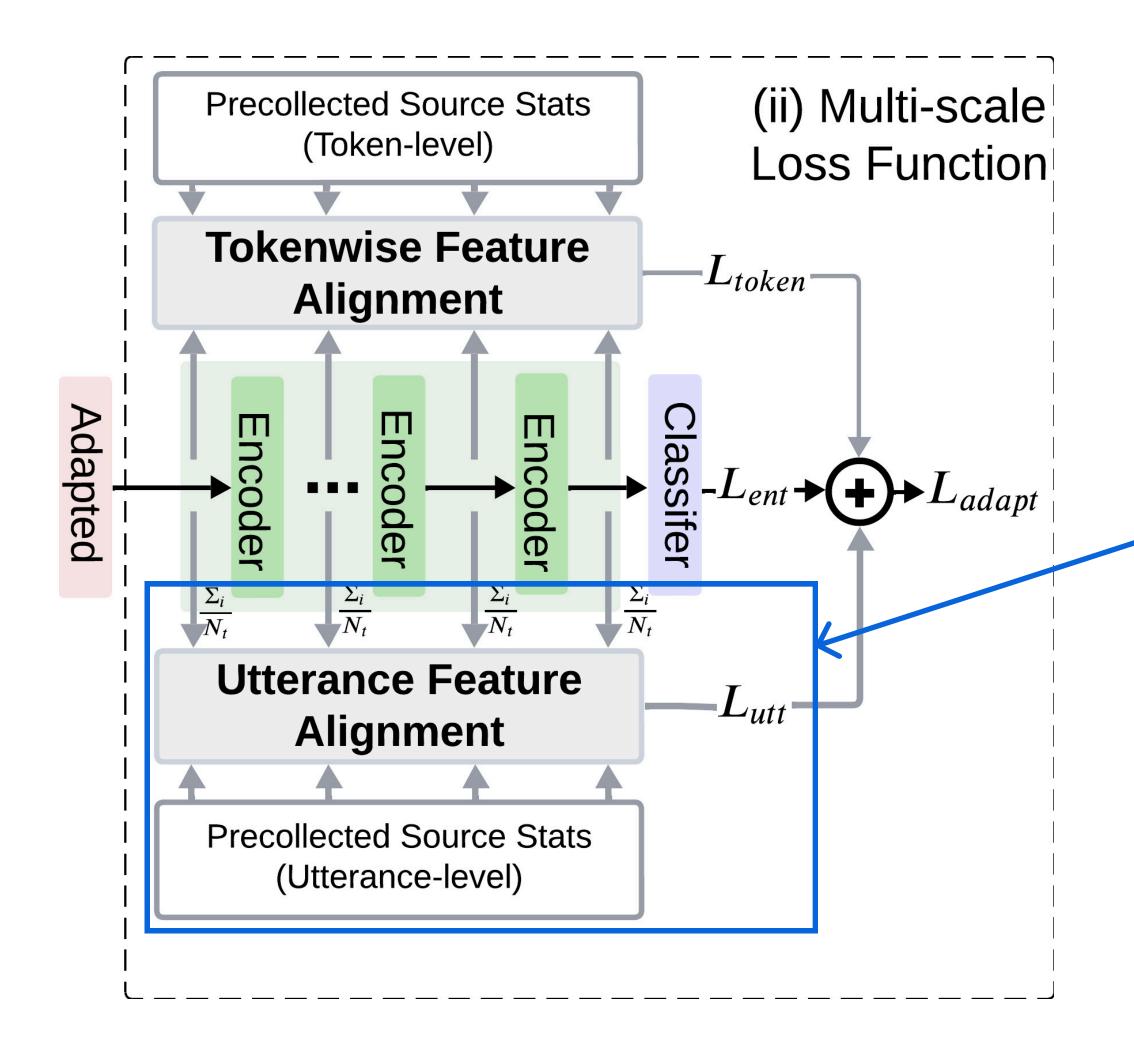


Entropy Loss

$$L_{ent} = -rac{1}{| ilde{X}_t|} \sum_{x_t^i \in ilde{X}_t} \mathcal{H}(\Theta(x_t^i))$$

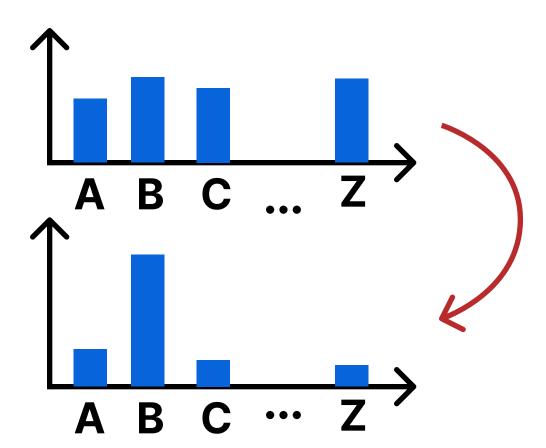






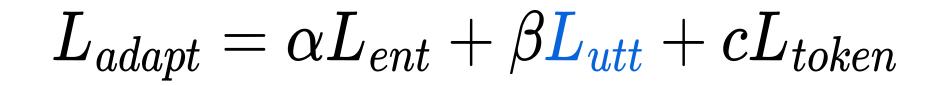
Entropy Loss

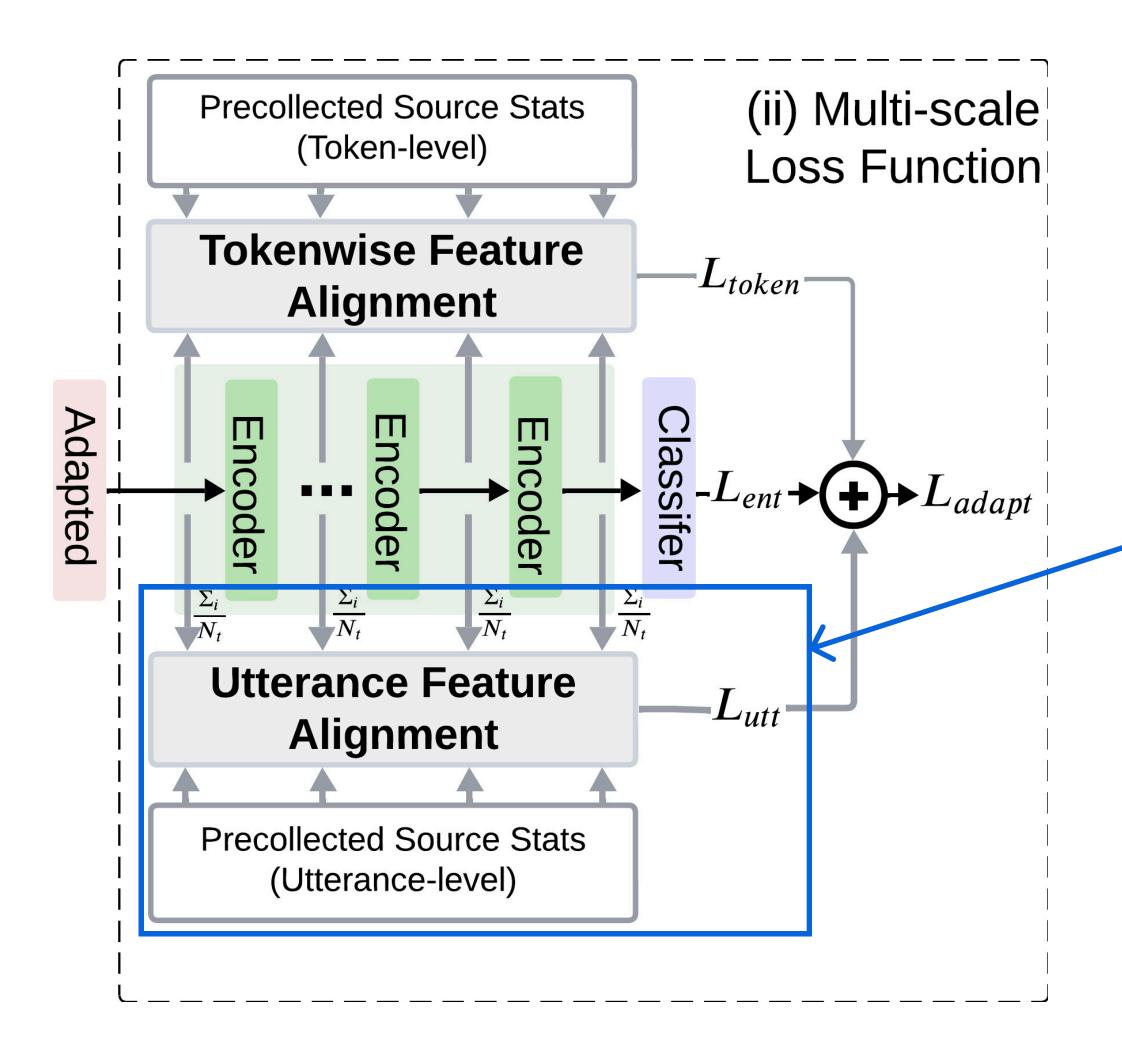
$$L_{ent} = -rac{1}{| ilde{X}_t|} \sum_{x_t^i \in ilde{X}_t} \mathcal{H}(\Theta(x_t^i))$$



• Utterance-level Latent Embedding Alignment Loss

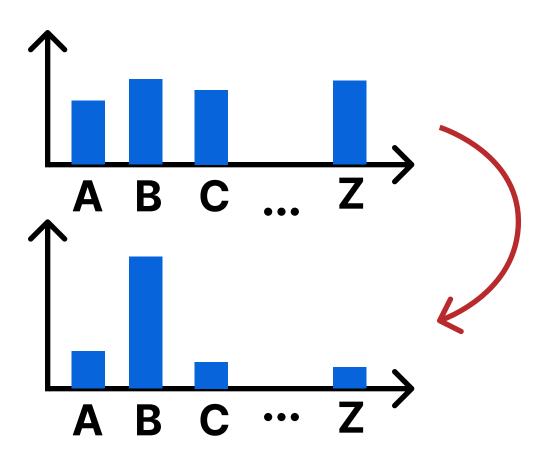
$$L_{ ext{utt}} = rac{1}{L} \sum_{l=0}^L \|\mu_{ ext{tgt}}^l - \mu_{ ext{src}}^l\|_2^2$$





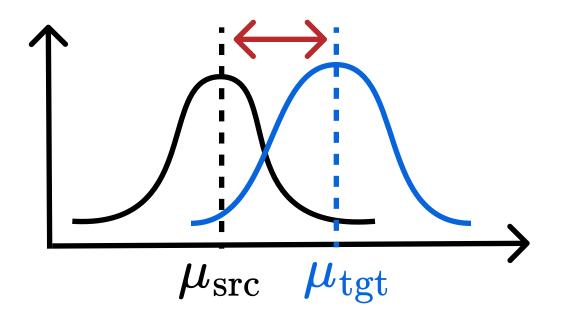
Entropy Loss

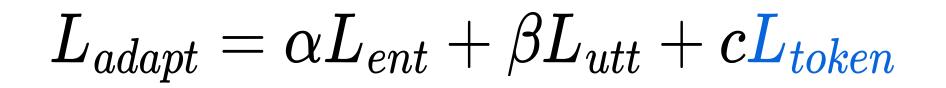
$$L_{ent} = -rac{1}{| ilde{X}_t|} \sum_{x_t^i \in ilde{X}_t} \mathcal{H}(\Theta(x_t^i))$$

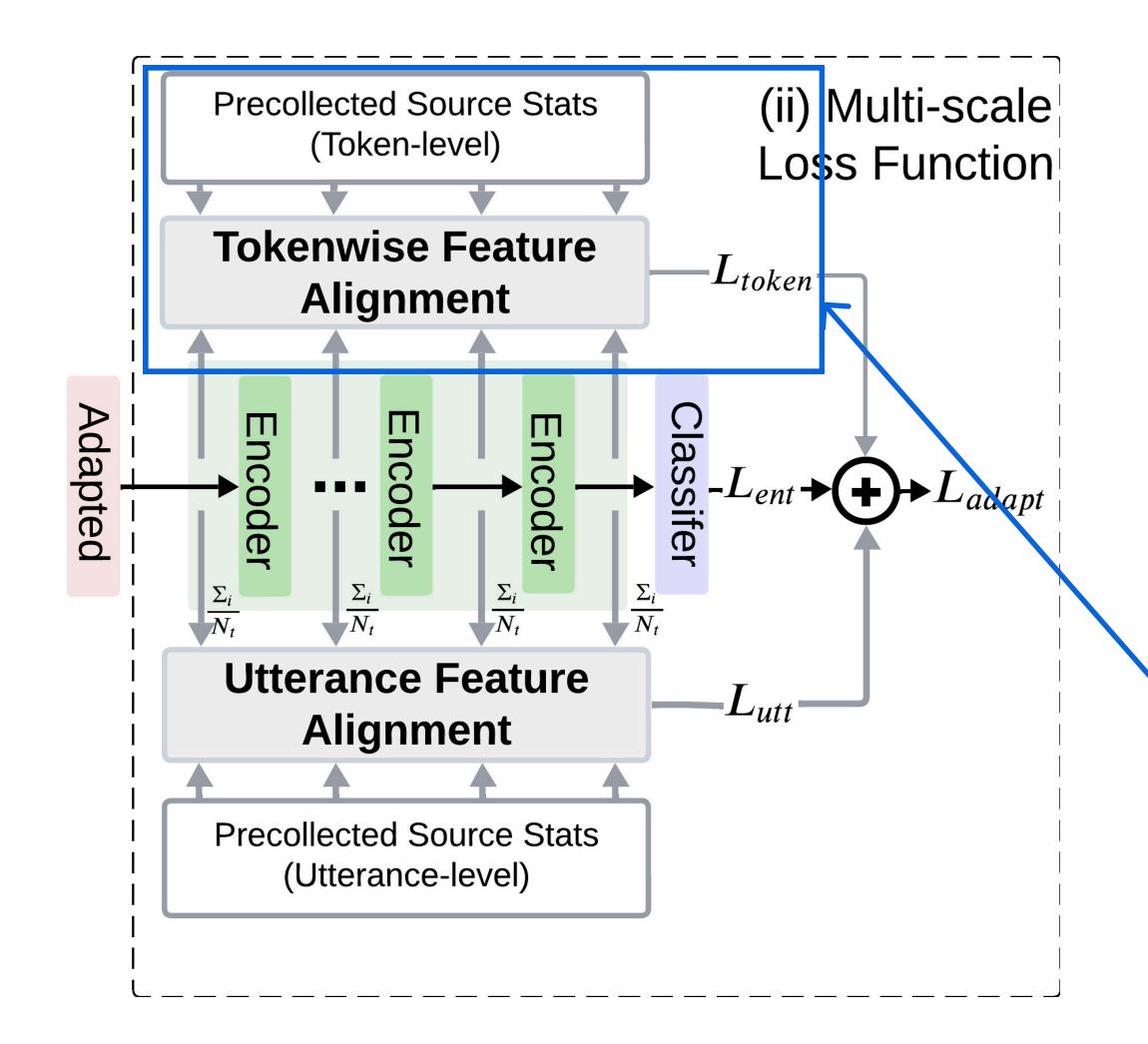


• Utterance-level Latent Embedding Alignment Loss

$$L_{ ext{utt}} = rac{1}{L} \sum_{l=0}^L \|\mu_{ ext{tgt}}^l - \mu_{ ext{src}}^l\|_2^2$$

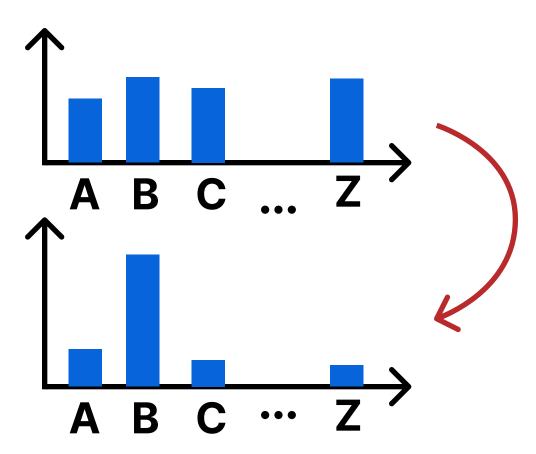






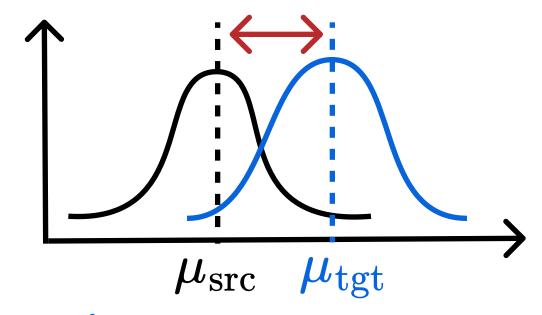
Entropy Loss

$$L_{ent} = -rac{1}{| ilde{X}_t|} \sum_{x_t^i \in ilde{X}_t} \mathcal{H}(\Theta(x_t^i))$$



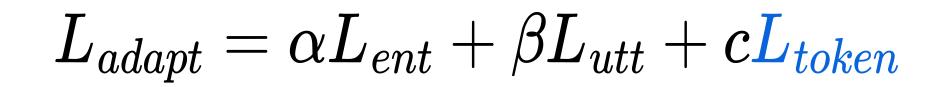
• Utterance-level Latent Embedding Alignment Loss

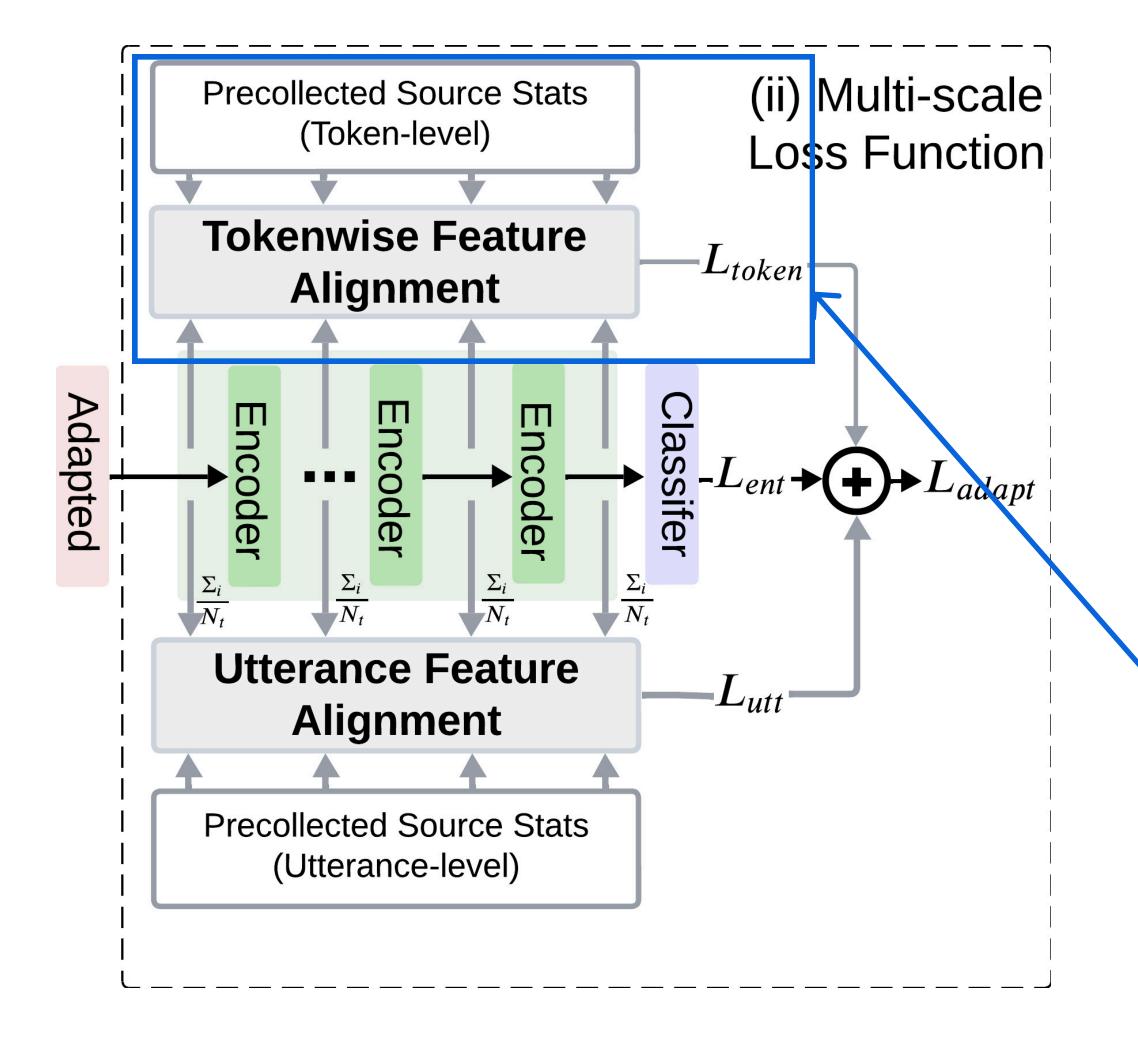
$$L_{ ext{utt}} = rac{1}{L} \sum_{l=0}^L \|\mu_{ ext{tgt}}^l - \mu_{ ext{src}}^l\|_2^2$$



Tokenwise Latent Embeddings Alignment

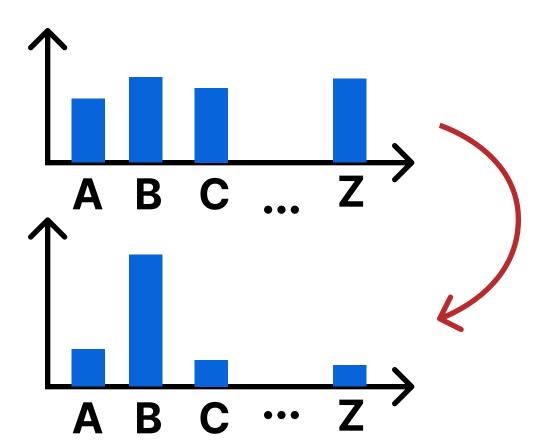
$$oldsymbol{L}_{token} = rac{1}{L}rac{1}{|\mathcal{V}|}\sum_{l=0}^{L}\sum_{v\in\mathcal{V}}\left(\left\|oldsymbol{\mu}_{tgt}^{v,l} - oldsymbol{\mu}_{src}^{v,l}
ight\|_{2}^{2} + \left\|oldsymbol{\sigma}_{tgt}^{v,l} - oldsymbol{\sigma}_{src}^{v,l}
ight\|_{2}^{2}
ight)$$





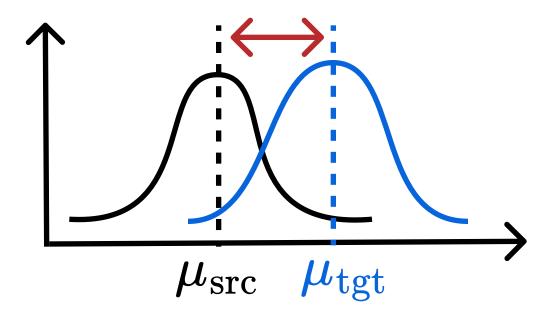
Entropy Loss

$$L_{ent} = -rac{1}{| ilde{X}_t|} \sum_{x_t^i \in ilde{X}_t} \mathcal{H}(\Theta(x_t^i))$$



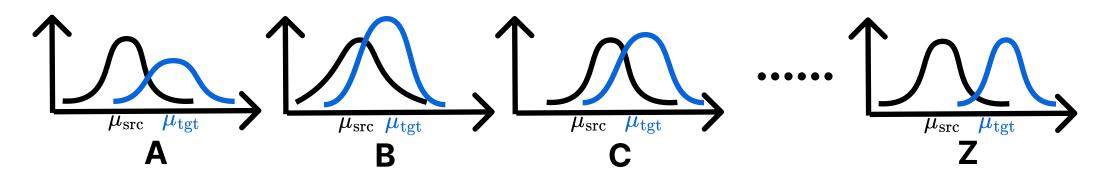
• Utterance-level Latent Embedding Alignment Loss

$$L_{ ext{utt}} = rac{1}{L} \sum_{l=0}^L \|\mu_{ ext{tgt}}^l - \mu_{ ext{src}}^l\|_2^2$$



Tokenwise Latent Embeddings Alignment

$$oldsymbol{L}_{token} = rac{1}{L}rac{1}{|\mathcal{V}|}\sum_{l=0}^{L}\sum_{v\in\mathcal{V}}\left(\left\|oldsymbol{\mu}_{tgt}^{v,l} - oldsymbol{\mu}_{src}^{v,l}
ight\|_{2}^{2} + \left\|oldsymbol{\sigma}_{tgt}^{v,l} - oldsymbol{\sigma}_{src}^{v,l}
ight\|_{2}^{2}
ight)$$



T-EMA across Utterances

- Stablize adaptation across the utterance streams
- Ensure a smoother CMA-ES parameter updates
- Reduce overfitting and mitigating model drift

T-EMA across Utterances

- Stablize adaptation across the utterance streams
- Ensure a smoother CMA-ES parameter updates
- Reduce overfitting and mitigating model drift

Update CMA-ES parameters with T-EMA

Mean vector

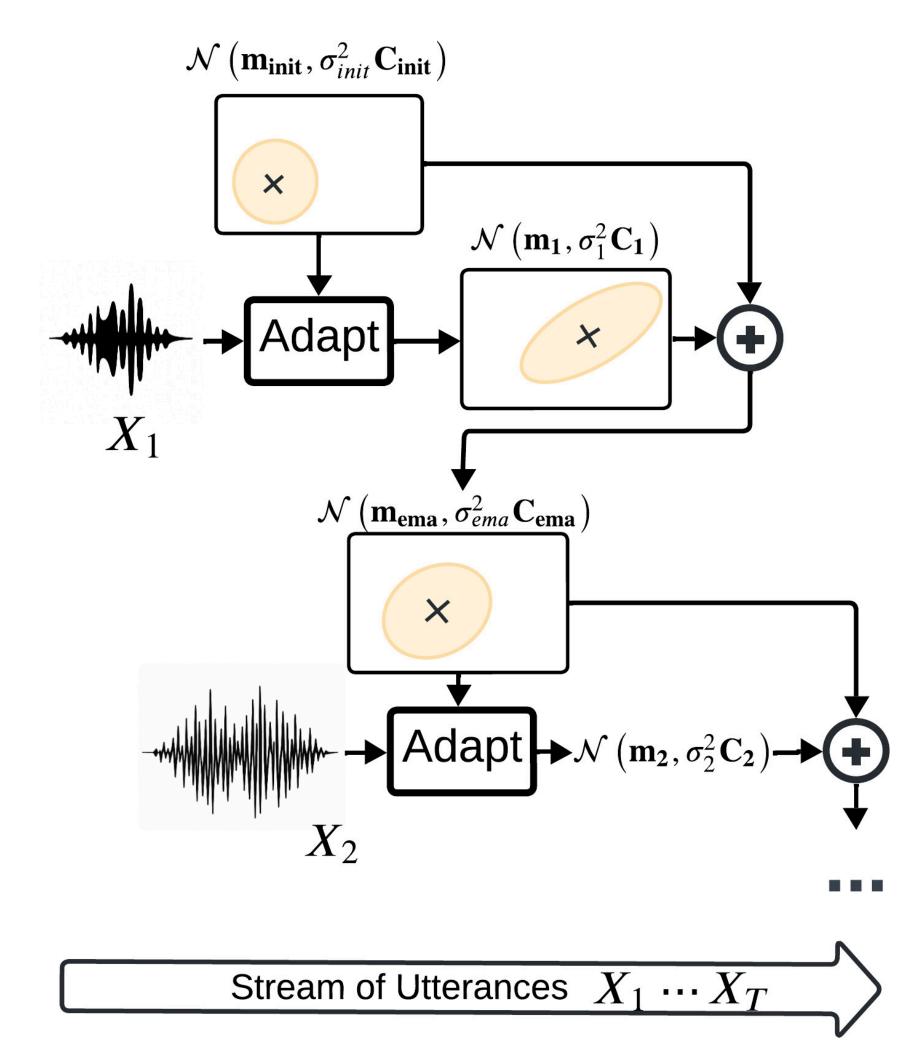
$$\mathbf{m}_{ema} = \gamma \, \mathbf{m}_{ema} + (1 - \gamma) \, \mathbf{m}_t$$

Covariance matrix

$$\mathbf{C}_{ema} = \gamma \, \mathbf{C}_{ema} + (1 - \gamma) \, \mathbf{C}_t$$

• Step size

$$\sigma_{ema} = \gamma \, \sigma_{ema} + (1 - \gamma) \, \sigma_t$$



Experimental Setup

Model Architecture

- Wav2Vec2ForCTC-Base
- HuBERTForCTC-Large

Datasets

- LibriSpeech
- CHIME-3
- CommonVoice
- TEDLIUM-v2

Domain Shifts Design

- Synthetic noise (5 severity levels)
- Environmental noise (Bus, Cafe, Pedestrian, Street junction)
 - Single domain
 - Mixed domain
- Mixed variability (accents, devices, environments)
- Mixed variability (accents, styles, syntactic structures)

Baselines

- Backpropagation-based TTA:

 (1)TENT (2)EATA (3)SAR
 (4)CoTTA (5)CEA (6)SGEM
 (7)AWMC (8)SUTA (9)CSUTA
 (10)DSUTA
- Backpropagation-Free TTA: (11)T3A (12)LAME (13)FOA

Results - Accuracy

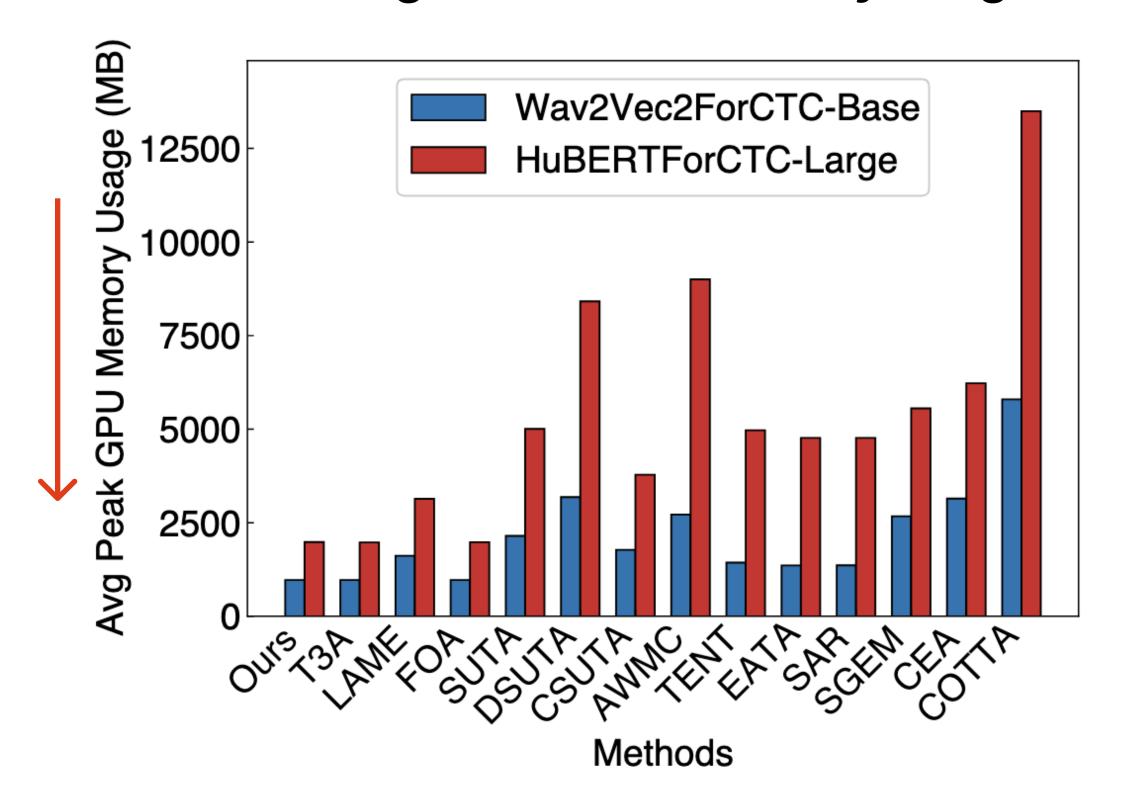
Table 1: Word Error Rate (WER) on various noisy conditions using Wav2Vec2ForCTC-Base. Lower value means better adaptation performance. **Bold** represents the best performance for BP-free TTA, while underlined means the best for both BP-based and BP-free TTA.

Method	BP-	- Gaussian noise						CHiME3	CHiME3	TED	Common
	free	0.0	0.005	0.01	0.015	0.02	Avg	(Single)	(Mixed)		Voice
Source		8.6	13.9	24.4	39.5	54.5	28.2	34.2	34.2	13.2	36.8
TENT	X	8.5	14.0	24.1	39.2	54.3	28.0	34.1	34.1	13.1	36.8
EATA	X	14.1	18.1	27.0	37.9	51.3	29.7	33.1	39.9	14.1	61.3
SAR	X	8.4	13.6	22.9	36.0	49.9	26.2	33.6	34.7	13.0	38.2
CoTTA	X	9.2	12.6	18.1	39.3	54.5	26.7	32.9	34.3	12.8	36.9
CEA	X	7.5	11.1	16.4	23.8	33.6	18.5	26.8	26.8	12.0	31.5
SGEM	X	<u>7.3</u>	10.9	16.4	23.8	33.9	18.5	27.2	27.1	11.9	31.2
AWMC	X	9.5	11.7	16.6	23.9	31.8	18.7	34.0	33.9	13.6	37.9
SUTA	X	7.3	10.9	16.5	24.1	34.1	18.6	26.8	26.8	<u>11.9</u>	31.5
CSUTA	X	13.1	17.5	24.5	31.4	37.0	24.7	26.5	32.6	15.6	135.0
DSUTA	X	9.0	11.7	16.1	21.1	<u>24.1</u>	16.4	<u>24.0</u>	<u>24.1</u>	12.7	36.1
T3A	✓	10.0	15.9	26.8	42.7	58.6	30.8	35.9	35.8	14.6	38.8
LAME	\checkmark	9.1	15.0	26.0	42.4	58.2	30.1	36.0	36.0	14.0	38.8
FOA	\checkmark	8.7	13.9	22.7	33.3	45.3	24.8	31.7	31.1	13.3	38.2
Ours	✓	7.7	<u>10.5</u>	<u>14.8</u>	<u>19.9</u>	25.3	<u>15.6</u>	<u>24.0</u>	24.3	12.5	<u>30.6</u>

E-BATS achieves up to 20.0% lower word error rate (WER) compared to BP-free TTA baselines (Wav2Vec2ForCTC-Base)

Results - Memory

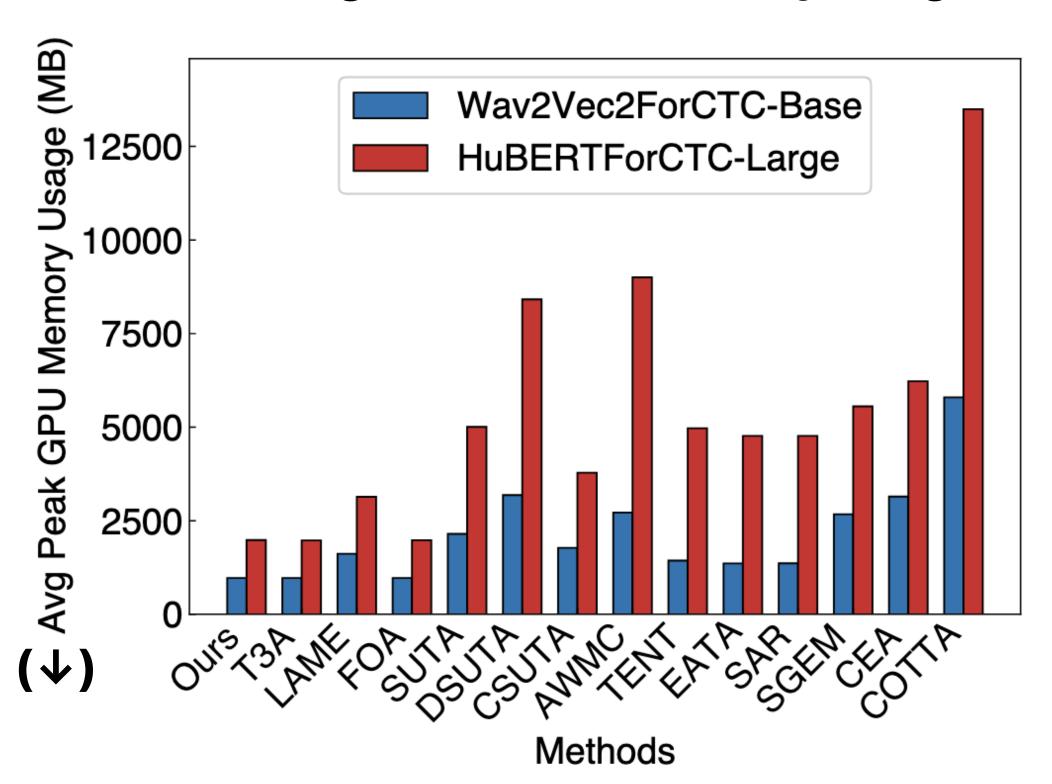
Average Peak GPU Memory Usage



E-BATS achieves up to 6.8x lower peak GPU memory usage compared to BP-based TTA baselines

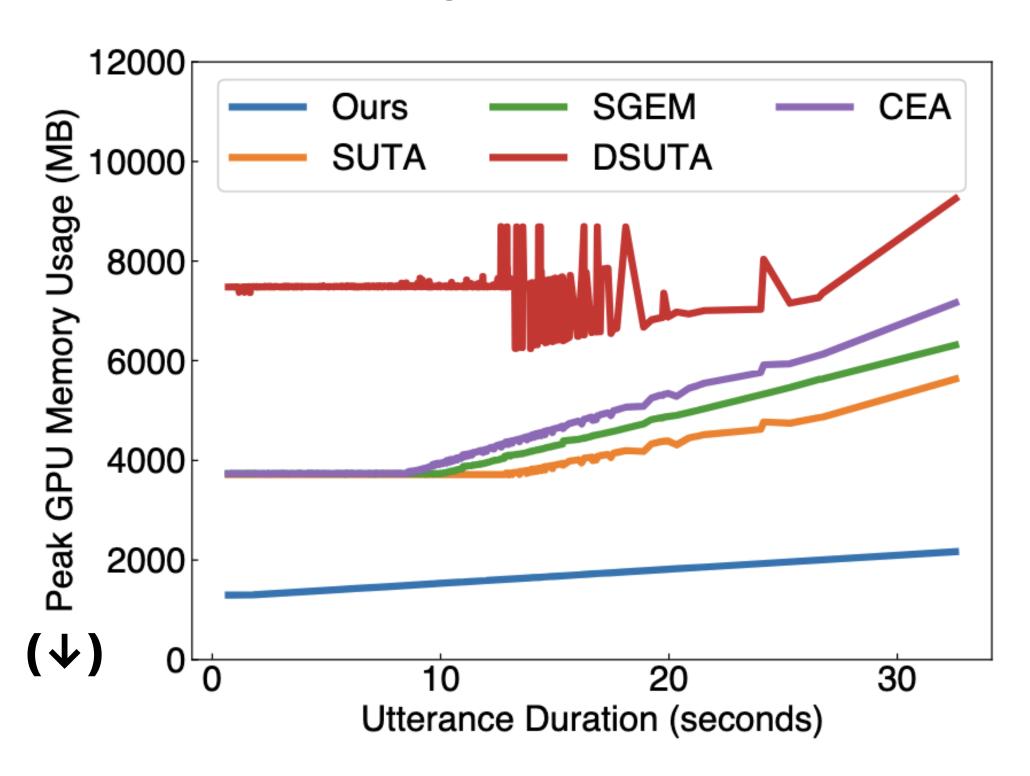
Results - Memory

Average Peak GPU Memory Usage



E-BATS achieves up to 6.8x lower peak GPU memory usage compared to BP-based TTA baselines

Memory usage vs. Utterance duration



E-BATS displays a stable and nearlinear profile for increasing utterance durations

Summary

Key Contributions

- First backpropagation-free TTA approach for SFMs
- Three novel modules address unique challenges of speech tasks
- Robust performance across diverse acoustic domain shifts

Thank you!

Paper

Code

Jiaheng.dong@student.unimelb.edu.au



