Improving Monte Carlo Tree Search for Symbolic Regression

Zhengyao Huang¹, Daniel Zhengyu Huang¹, Tiannan Xiao², Dina Ma², Zhenyu Ming², Hao Shi³, Yuanhui Wen²

¹Center for Machine Learning Research, Peking University ²Huawei Technologies Ltd., Beijing ³Department of Mathematical Sciences, Tsinghua University https://github.com/PKU-CMEGroup/MCTS-4-SR

NeurIPS 2025

Motivation & Contributions

- Symbolic Regression (SR) aims to recover interpretable mathematical expressions.
- Traditional GP or RL methods often suffer from weak exploration and unstable convergence.
- Monte Carlo Tree Search (MCTS) naturally explores expression trees but standard UCB focuses on average reward.

Our Key Ideas:

- Replace UCB with UCB-Extreme, targeting maximum (not mean) reward.
- Introduce State-Jumping, combined with Bidirectional Propagation to share high-reward structures globally and allow non-local transitions via mutation and crossover.

Why UCB-Extreme?

Standard UCB:

$$a = \arg\max_{a} \left[Q(s,a) + c \sqrt{\frac{2 \ln T_s}{T_{s,a}}} \right]$$

- Optimizes the expected mean reward.
- Works well for average-regret minimization.
- Fails in SR where we only care about the best expression found.

UCB-Extreme:

$$I_{T+1} = \arg\max_{k} \left[\hat{Q}_{k,T_k} + 2c \left(\frac{\ln T}{T_{k,T}} \right)^{\gamma} \right]$$

- \hat{Q}_{k,T_k} : best reward from arm k so far.
- Theoretical guarantees under heavy-tailed rewards:

$$R(T) = O\left(\frac{\ln T}{T^{1+1/a_1}}\right)$$

 \rightarrow Shifts from average performance to best-arm discovery, better suited for SR.

Why State-Jumping?

- In symbolic regression, valid expressions are sparse in a huge combinatorial space.
- ullet Standard MCTS expands nodes locally o easily trapped in subtrees.
- We enable **non-local exploration** via:
 - ullet Each node maintains a **priority queue** of the top-N high-reward trajectories encountered during the search.
 - Before selection, the algorithm may apply:
 - Mutation: randomly alters sub-expressions from stored trajectories.
 - Crossover: recombines sub-expressions between high-reward trajectories.
- Combined with bidirectional propagation, the best structures are shared upward and downward:

$$\hat{V}(v) = \max_{v' \in \mathsf{children}(v)} \hat{V}(v')$$

→ Encourages faster discovery and reuse of globally optimal substructures.

Overview of the Improved MCTS Framework

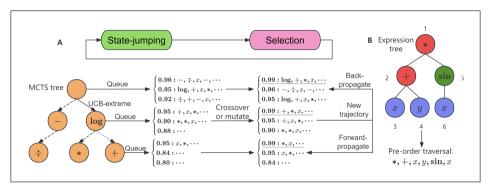


Figure: Overview of UCB-Extreme and State-Jumping within the MCTS workflow.

Experimental Setup

- Benchmarks: Nguyen, NguyenC, Jin, Livermore, and SRBench Black-box.
- Metrics:
 - Basic: recovery rate over 100 runs (2M evals/run).
 - SRBench Black-box: median test \mathbb{R}^2 and model size (500k evals or 48h).
- Baselines: DSR, GEGL, NGGP, PySR, Operon, GP-GOMEA and several standard machine learning regressors.

Results on Ground-truth Benchmarks

Benchmark	Ours	DSR	GEGL	NGGP	PySR
Nguyen	93.3	83.6	86.0	92.3	74.4
NguyenC	100.0	100.0	100.0	100.0	65.4
Jin	100.0	70.3	95.7	100.0	72.2
Livermore	71.4	30.4	56.4	71.1	46.1

• Outperforms or matches all baselines across datasets.

Results on SRBench Black-box

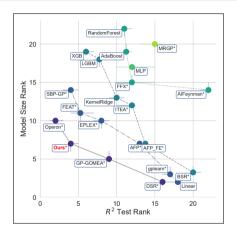


Figure: Pareto frontier of model size vs. median test \mathbb{R}^2 .

• Competitive accuracy with more compact expressions.

Conclusion

- Proposed an improved MCTS framework for Symbolic Regression:
 - Extreme-bandit allocation for best-arm discovery.
 - **Evolution-inspired state-jumping** combined with **Bidirectional Propagation** for non-local exploration and efficient information sharing.
- Demonstrated theoretical optimality and empirical competitiveness.

Code: https://github.com/PKU-CMEGroup/MCTS-4-SR

Thank you!

Questions?