CamSAM2: Segment Anything Accurately in Camouflaged Videos

Yuli Zhou^{1,3} Yawei Li¹ Yuqian Fu⁴ Luca Benini^{1,5} Ender Konukoglu¹ Guolei Sun²*

¹ETH Zurich ²Nankai University ³University of Zurich ⁴INSAIT, Sofia University "St. Kliment Ohridski" ⁵University of Bologna

Task definition:

Video Camouflaged Object Segmentation (VCOS)

- Challenge: SAM2 achieves strong video segmentation, but struggle in camouflage cases due to:
 - SAM2 is optimized for natural scenes rather than camouflaged environments.
 - The architecture does not account for the complexities of segmenting and tracking camouflaged objects across time.

Motivation:

 Can we adapt SAM2 for accurate segmentation in camouflaged videos without breaking its general zero-shot capability?

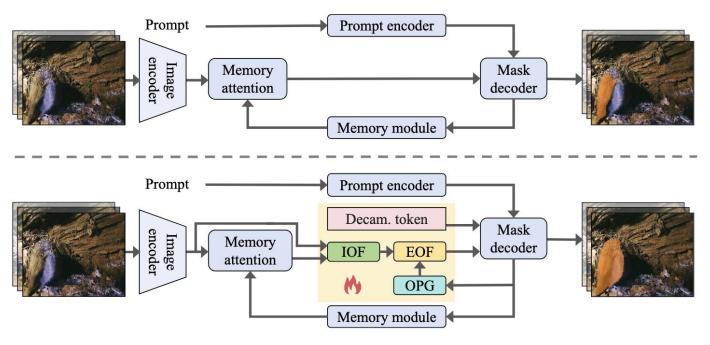


Figure 1: **Illustration of SAM2 and CamSAM2**. *Top:* SAM2's segmentation of the camouflaged object is suboptimal, primarily because its feature optimization is biased toward natural videos, and its design does not account for the unique challenges inherent to VCOS. *Bottom:* CamSAM2 improves SAM2's ability to segment and track camouflaged objects by introducing a *decamouflaged token*, *IOF* to enhance features with high-resolution features, and *EOF* and *OPG* to further enhance features by exploiting informative object details across time. CamSAM2 only adds a limited number of parameters to SAM2 while keeping all SAM2's parameters fixed and fully inheriting SAM2's zero-shot ability. The segmentation result is overlaid in orange on the frame.

Method Overview: CamSAM2

• Core ideas:

- Decamouflaged token
- Implicit and Explicit
 Object-aware Fusion
 (IOF & EOF)
- Object Prototype Generation (OPG)
- Without modifying
 SAM2's main parameters
- Only ~0.5M parameters added

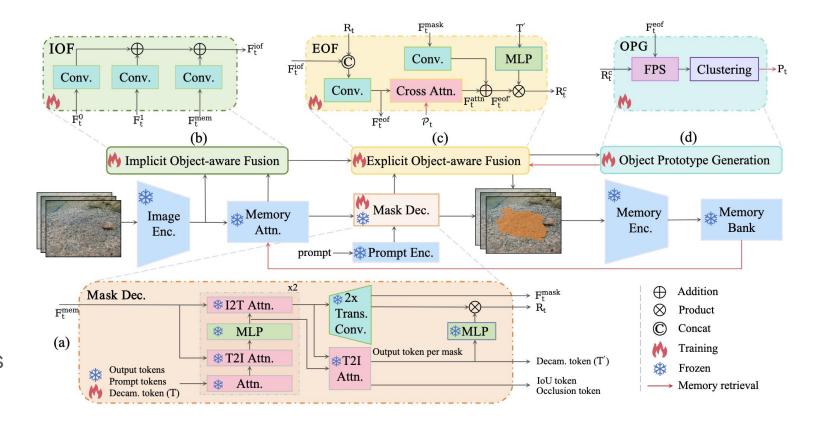


Figure 2: **Overall architecture of CamSAM2**. CamSAM2 effectively captures and segments camouflaged objects by leveraging implicit and explicit object-aware information from the current or previous frames. It includes the following key components: (a) the decamouflaged token, which extends SAM2's token structure to learn features suitable for camouflaged objects; (b) an IOF module to enrich memory-conditioned features with implicitly object-aware high-resolution features; (c) an EOF module to aggregate explicit object-aware features; and (d) an OPG module, generating informative object prototypes, which guides cross-attention in EOF. These components work together to preserve fine details, enhance segmentation quality, and track camouflaged objects across time.

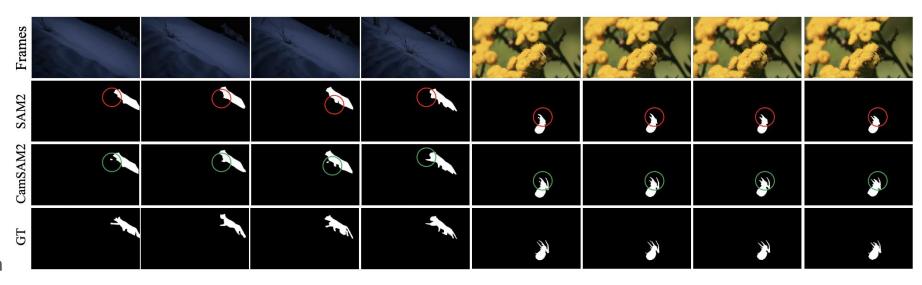
Experiments & Key Results:

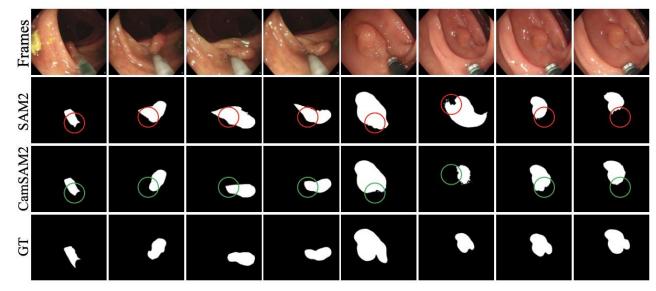
• Datasets:

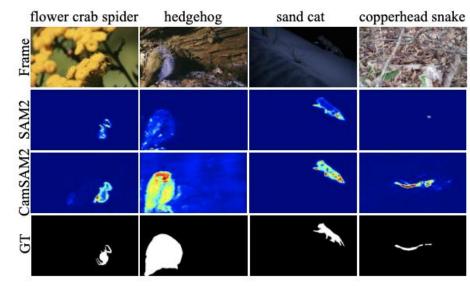
- Wildlife animal camouflage: MoCA-Mask, CAD
- Medical polyp camouflage: SUN-SEG

• Results:

MoCA-Mask


Model	Prompt	Hiera-T		Hiera-S	
		mDice ↑	mIoU↑	mDice ↑	mIoU ↑
SAM2 CamSAM2	1-click	52.1 64.3 (+12.2)	44.8 54.6 (+9.8)	54.9 68.0 (+13.1)	46.7 58.8 (+12.1)
SAM2 CamSAM2	box	72.7 75.5 (+2.8)	62.3 64.8 (+2.5)	73.7 76.4 (+2.7)	63.8 66.1 (+2.3)
SAM2 CamSAM2	mask	77.1 80.2 (+3.1)	67.9 70.5 (+2.6)	80.3 81.4 (+1.1)	70.7 71.7 (+1.0)


SUN-SEG


Model	$\mid S_m \uparrow$	$F^\omega_eta\uparrow$	$E_m \uparrow$	mDice ↑				
SUN-SEG-Easy								
SAM2 [15]	83.4	71.6	83.0	73.6				
CamSAM2	88.3	82.6	93.4	84.3				
	SUN-	SEG-H	ard					
SAM2 [15]	75.5	58.4	73.4	61.0				
CamSAM2	86.4	78.2	91.2	80.6				

Visualizations

- Top-right:
 - MoCA-Mask
- Bottom-left:
 - SUN-SEG
- Bottom-right:
 - Attention maps of SAM2 token and the decamouflaged token

Takeaways

- CamSAM2 extends SAM2 to handle camouflaged video segmentation effectively.
- The Decamouflaged Token, Implicit and Explicit Object-aware Fusion, and Object
 Prototype Generation together improve both spatial accuracy and temporal
 consistency.
- Achieves SOTA performance while keeping SAM2's parameters unchanged and general-purpose.

• Contact:

- Yuli Zhou: zhoustan98@gmail.com
- Guolei Sun: guolei.sun@nankai.edu.cn

