

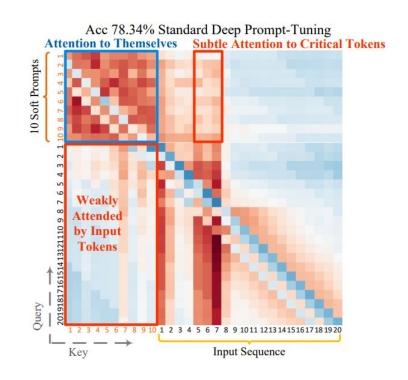
All You Need is One: Capsule Prompt Tuning with a Single Vector

Yiyang Liu, James C. Liang, Heng Fan, Wenhao Yang, Yiming Cui, Xiaotian Han, Lifu Huang, Dongfang Liu, Qifan Wang, Cheng Han

Attention Analysis of Task-aware Prompt Tuning

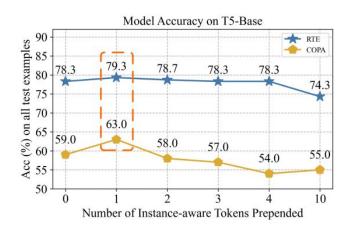
Prompt tuning offers a flexible and efficient solution with minimal input sequence adjustment, thus enabling fast adaptation of large language models (LLMs).

Counterintuitively, task-aware soft prompts typically fail to establish strongly attentive interaction with input tokens. This observation reveals that the task-aware design of soft prompts may limit their capability to adapt to diverse input semantics, potentially constraining the effectiveness of prompt-based learning.

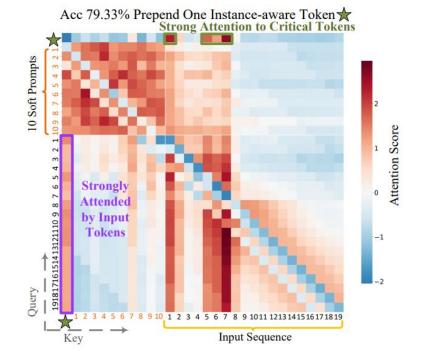


The Power of Instance-aware Information

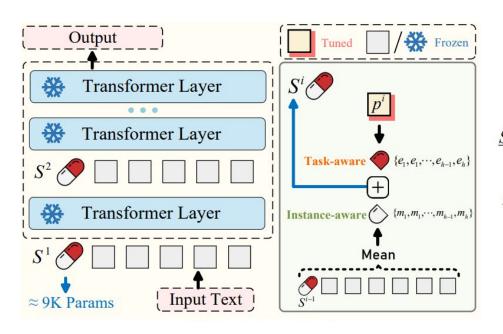
Instance-aware token can enhance model performance even without any fine-tuning.



Instance-aware token presents strongly attentive interaction with input sequences as "attention anchor."



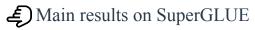
Capsule Prompt Tuning with A Single Vector (CaPT)



$$\begin{split} S^1 &= p^1 + \texttt{Mean}(E) \\ \underline{S}^1, H^1 &= L_1(S^1, E) \\ S^i &= p^i + \texttt{Mean}(\underline{S}^{i-1} \oplus H^{i-1}) \quad i = 2, 3, \dots, N \\ \underline{S}^i, H^i &= L_i(S^i, \ H^{i-1}) \quad i = 2, 3, \dots, N \end{split}$$

Experimental Results

Method	# Para	Boolq	CB	COPA	MRC	RTE	WiC	Average	
Wethou	#1 ага	Acc	F1/Acc	Acc	Fla	Acc	Acc	Score	
T5-Base (220M)									
Fine-Tuning [†] [64]	100%	82.30	91.30	60.00	79.70	84.50	69.30	77.85	
Prompt-Tuning*[EMNLP21] [11]	0.06%	78.12	84.42	54.37	78.30	75.27	62.29	72.13	
P-Tuning v2*[ACL22] [53]	0.53%	80.81	90.23	61.28	79.83	81.98	67.56	76.94	
XPrompt*[EMNLP22] [17]	0.04%	79.67	86.72	56.95	78.57	78.29	64.31	74.09	
ResPrompt*[ACL23] [52]	0.21%	79.25	85.33	58.64	78.42	77.14	62.36	73.52	
SMoP†[EMNLP23] [23]	8e-3%	79.40	86.42	58.30	79.60	77.50	65.20	74.40	
SuperPos-Prompt†[NeurIPS24] [65]	-	74.00	80.20	62.00	72.90	70.40	67.60	71.18	
VFPT[NeurIPS24] [10]	0.21%	78.38	90.92	61.76	78.73	76.90	65.36	75.34	
DePT†[ICLR24] [66]	-	79.30	-	-	74.30	79.10	68.70	-	
EPT[NAACL25] [67]	0.06%	79.14	90.18	56.33	73.43	78.99	67.71	74.30	
Ours	4e-3%	79.54	94.16	64.33	80.46	79.78	66.77	77.51	
T5-Large (770M)									
Fine-Tuning [64]	100%	85.75	95.26	76.00	84.41	88.05	72.11	83.60	
Prompt-Tuning[EMNLP21][11]	0.04%	83.20	90.32	57.50	83.10	86.11	68.74	78.16	
P-Tuning v2[ACL22] [53]	0.52%	85.82	95.56	77.00	84.07	89.25	71.03	83.79	
XPrompt*[EMNLP22] [17]	0.02%	83.82	91.39	82.05	81.26	87.72	73.51	83.29	
ResPrompt*[ACL23] [52]	0.15%	83.51	90.64	82.79	84.02	86.97	71.13	83.18	
SMoP[EMNLP23] [23]	3e-3%	83.45	92.37	71.00	83.92	87.70	68.60	81.17	
VFPT[NeurIPS24] [10]	0.18%	83.89	93.71	75.63	83.24	88.10	71.00	82.56	
EPT[NAACL25] [67]	0.04%	84.77	93.40	54.00	80.03	86.33	71.79	78.39	
Ours	3e-3%	84.56	97.22	80.00	84.53	88.45	69.44	84.03	
*******			a3.2-1B		111				
Linear Head [60]	3e-4%	59.85	51.69	56.33	48.94	55.23	53.45	54.25	
Prompt-Tuning[EMNLP21] [11]	0.06%	60.95	61.61	57.67	57.00	62.50	54.70	59.07	
P-Tuning v2[ACL22] [53]	0.53%	62.48	64.29	61.00	60.34	58.12	60.15	61.06	
SMoP[EMNLP23] [23]	0.04%	61.13	62.50	59.33	57.46	57.40	54.23	57.51	
VFPT[NeurIPS24] [10]	0.17%	62.44	61.72	59.67	58.41	64.35	57.60	60.70	
EPT[NAACL25] [67]	0.06%	61.56	65.22	56.00	60.18	63.90	59.45	61.05	
Ours	3e-3%	77.28	65.82	58.00	65.73	72.56	65.67	67.51	
Qwen2.5-1.5B									
Linear Head [60]	2e-4%	59.54	64.66	52.00	53.38	62.45	56.58	58.10	
Prompt-Tuning[EMNLP21] [11]	0.05%	61.38	65.22	52.33	53.41	63.18	56.90	58.74	
P-Tuning v2[ACL22] [53]	0.51%	62.08	68.84	55.33	56.31	66.43	59.09	61.35	
SMoP[EMNLP23] [23]	0.03%	61.41	66.76	54.00	55.34	64.62	58.15	60.05	
VFPT[NeurIPS24] [10]	0.12%	63.64	67.78	52.67	55.61	63.54	58.05	60.22	
EPT[NAACL25] [67]	0.05%	63.10	68.17	52.33	56.02	67.53	58.30	60.91	
Ours	3e-3%	64.13	72.42	57.67	57.49	68.59	58.46	63.17	



Wall-clock efficiency compared with other prompt-tuning methods

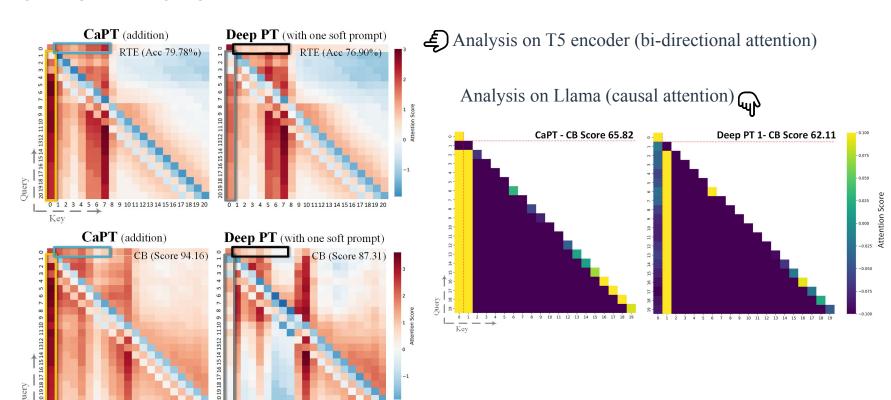
Method	# Para Time		Average Score		
Prompt-Tuning [11]	0.06%	8.77×	72.13		
P-Tuning v2 [53]	0.53%	8.37×	76.94		
M-IDPG [70]	0.47%	12.58×	76.96		
LoPA [71]	0.44%	14.93×	77.98		
Ours	4e-3%	1.00×	77.51		

Comparison with other PEFT methods

Method	# Para	Boolq Acc	CB F1/Acc	COPA Acc	MRC Fla	RTE Acc	WiC Acc	Average Score	
T5-Base (220M)									
Adapter [8]	0.86%	82.50	88.05	71.50	75.90	71.90	67.10	76.16	
LoRA [6]	1.73%	81.30	88.20	70.40	72.60	75.5	68.30	76.05	
Ours	4e-3%	79.54	94.16	64.33	80.46	79.78	66.77	77.51	

Attention Anchor

Key



Conclusion

• Based on our finding of "attention anchor" phenomenon, we propose Capsule Prompt-Tuning (CaPT), a novel prompt tuning framework for large language models (LLMs).

• CaPT integrates both instance-aware information from each input sequence and task-aware information from learnable vectors, effectively acting as "attention anchor." By strengthening attentive interplay with input tokens, it thereby achieves superior performance.

• CaPT can operate in an almost parameter-free manner, utilizing only one single vector per layer, which eliminates the need for time-intensive grid searching, varied lengths across different tasks, and substantial training overhead.