

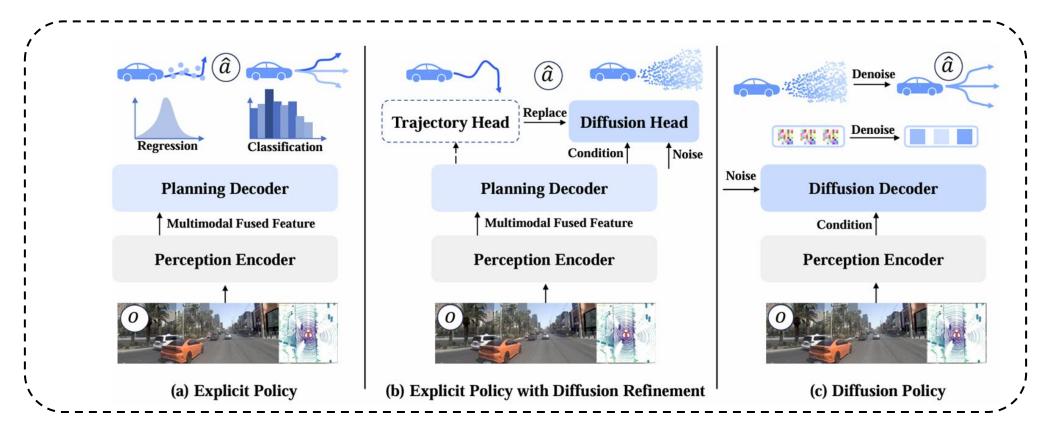
DiffE2E: Rethinking End-to-End Driving with a Hybrid Diffusion-Regression-Classification Policy

Rui Zhao, Yuze Fan, Ziguo Chen, Fei Gao*, Zhenhai Gao

College of Automotive Engineering, Jilin University

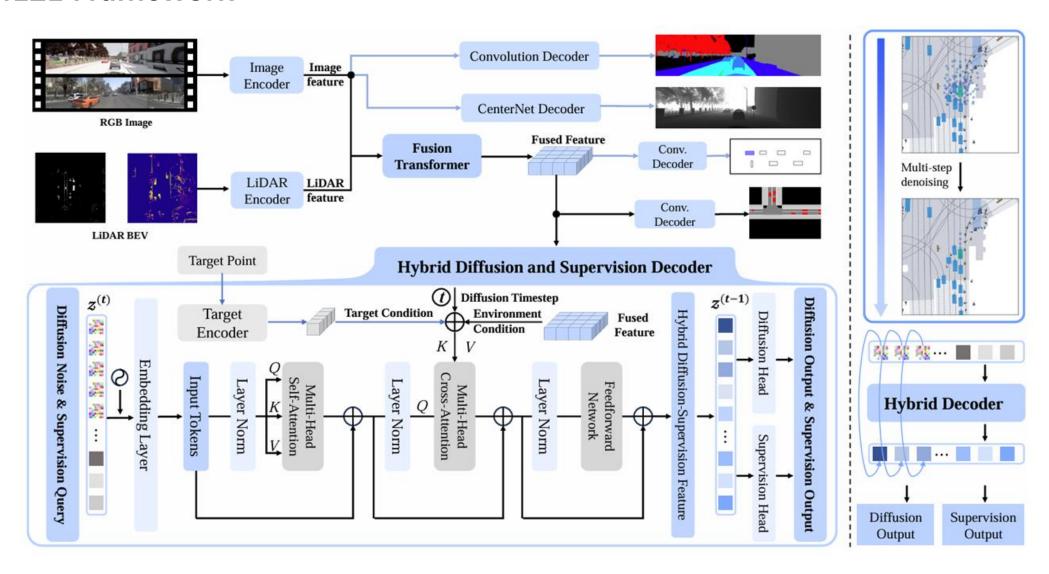
National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University

1 Introduction


2 Framework

3 Experiment Demonstration

Introduction


Comparison of different end-to-end driving training paradigms

(a) Explicit Policy. Directly predicts trajectories through regression after sensor input processing. (b) Explicit Policy with Diffusion Refinement. Uses diffusion models to replace traditional explicit policy trajectory output heads. (c) Diffusion Policy. Uses diffusion models to directly generate trajectories based on perception encoder features.

Framework

◆ DiffE2E Framework

◆ Experiment Demonstration

Comparison on the CARLA Longest6 Benchmark

Comparison on the Navtest Benchmark

Method	Traj. Decoder	Img. Encoder	Input	DS↑	RC ↑	IS↑
Expert	-	-	-	81 ± 3	90 ± 1	0.91 ± 0.04
WOR [4]	-	ResNet-34 [17]	С	21 ± 3	48 ± 4	0.56 ± 0.03
LAV v1 [2]	Explicit Policy	ResNet-18 [17]	C&L	33 ± 1	70 ± 3	0.51 ± 0.02
InterFuser [42]	Explicit Policy	ResNet-50 [17]	C&L	47 ± 6	74 ± 1	0.63 ± 0.07
TransFuser [9]	Explicit Policy	RegNetY-3.2GF [39]	C&L	47 ± 6	93 ± 1	0.50 ± 0.06
TCP [53]	Explicit Policy	ResNet-34 [17]	C	48 ± 3	72 ± 3	0.65 ± 0.04
ThinkTwice [26]	Explicit Policy	ResNet-50 [17]	C&L	51 ± 4	64 ± 4	0.80 ± 0.03
LAV v2 [2]	Explicit Policy	ResNet-18 [17]	C&L	58 ± 1	83 ± 1	0.68 ± 0.02
Perception PlanT [40]	Explicit Policy	RegNetY-3.2GF [39]	C&L	58 ± 5	88 ± 1	0.65 ± 0.06
DriveAdapter [25]	Explicit Policy	ResNet-50 [17]	C&L	58 ± 2	73 ± 3	0.79 ± 0.04
TF++ [23]	Explicit Policy	RegNetY-3.2GF [39]	C&L	69 ± 0	94 ± 2	0.72 ± 0.01
DiffE2E (Ours)	Diffusion Policy	RegNetY-3.2GF 39	C&L	79 ± 4	94 ± 2	$\textbf{0.84} \pm \textbf{0.02}$

Method	Traj. Decoder	Img. Enc.	Input	PDMS↑	NC↑	DAC↑	EP↑	TTC↑	C↑
Human	-	-	-	94.8	100	100	87.5	100	99.9
AD-MLP [58]	Explicit Policy	-	S	65.6	93.0	77.3	62.8	83.6	100
VADv2 6	Explicit Policy	ResNet-34 [17]	C&L	80.9	97.2	89.1	76.0	91.6	100
UniAD [21]	Explicit Policy	ResNet-34 [17]	C	83.4	97.8	91.9	78.8	92.9	100
LTF [9]	Explicit Policy	ResNet-34 [17]	C	83.8	97.4	92.8	79	92.4	100
PARA-Drive [52]	Explicit Policy	ResNet-34 [17]	C	84.0	97.9	92.4	79.3	93	99.8
TransFuser [9]	Explicit Policy	ResNet-34 [17]	C&L	84.0	97.7	92.8	79.2	92.8	100
LAW [32]	Explicit Policy	ResNet-34 [17]	C	84.6	96.4	95.4	81.7	88.7	99.9
DRAMA [56]	Explicit Policy	ResNet-34 [17]	C&L	85.5	98	93.1	80.1	94.8	100
Hydra-MDP [33]	Explicit Policy	ResNet-34 [30]	C&L	86.5	98.3	96.0	78.7	94.6	100
DiffusionDrive [34]	Diffusion Policy*	ResNet-34 [17]	C&L	88.1	98.2	96.2	82.2	94.7	100
GoalFlow [54]	Diffusion Policy*	V2-99 [30]	C&L	90.3	98.4	98.3	85	94.6	100
Hydra-MDP ^o [33]	Explicit Policy	ViT-L [15] + V2-99 [30]	C&L	91.0	98.7	98.2	86.5	95.0	100
Hydra-MDP++ [31]	Explicit Policy	V2-99 [30]	C	91.0	98.6	98.6	<u>85.7</u>	95.1	100
DiffE2E [†]	Diffusion Policy	ResNet-34 [17]	C&L	89.8	99.2	96.8	83.6	96.7	100
DiffE2E [‡]	Diffusion Policy	V2-99 [30]	C	90.9	99.7	97.1	84.2	98.2	99.9
DiffE2E (Ours)	Diffusion Policy	V2-99 30	C&L	92.7	99.9	98.6	85.3	99.3	99.9

◆ Experiment Demonstration

Comparison on the CARLA Town05 Long Benchmark

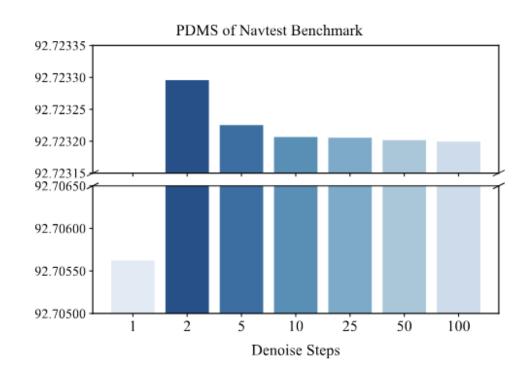
Town05 Long Benchmark

Comparison on the CARLA Town05 Short Benchmark

Method	Traj. Decoder	Img. Encoder	Input	DS ↑	RC ↑	IS↑
CILRS [10]	Explicit Policy	ResNet-34 [17]	С	7.8	10.3	0.75
LBC [3]	Explicit Policy	ResNet-18,34 [17]	C	12.3	31.9	0.66
Roach [60]	Explicit Policy	ResNet-34 [17]	C	41.6	96.4	0.43
ST-P3 [20]	Explicit Policy	EfficientNet-B4 [49]	C	11.5	83.2	-
VAD [27]	Explicit Policy	ResNet-50 [17]	C	30.3	75.2	-
MILE [19]	Explicit Policy	ResNet-18 [17]	C	61.1	97.4	0.63
DriveMLM [51]	Explicit Policy	ViT-G [59]	C&L	76.1	98.1	0.78
VADv2 [6]	Explicit Policy	ResNet-50 [17]	C	<u>85.1</u>	<u>98.4</u>	0.87
DiffE2E (Ours)	Diffusion Policy	RegNetY-3.2GF 39	C&L	90.8	100	0.91

Method	Traj. Decoder	Img. Encoder	Input	DS↑	RC↑
CILRS [10]	Explicit Policy	ResNet-34 [17]	С	7.5	13.4
LBC [3]	Explicit Policy	ResNet-18,34 [17]	C	31.0	55.0
TransFuser [9]	Explicit Policy	RegNetY-3.2GF [39]	C&L	54.5	78.4
ST-P3 [20]	Explicit Policy	EfficientNet-B4 [49]	C	55.1	86.7
NEAT [8]	Explicit Policy	ResNet-34 [17]	C	58.7	77.3
Roach [60]	Explicit Policy	ResNet-34 [17]	C	65.3	88.2
WOR [4]	-	ResNet-18,34 [17]	C	64.8	87.5
VAD [27]	Explicit Policy	ResNet-50 [17]	C	64.3	87.3
VADv2 [6]	Explicit Policy	ResNet-50 [17]	C	89.7	93.0
InterFuser [42]	Explicit Policy	ResNet-50 [17]	C&L	95.0	95.2
DiffE2E (Ours)	Diffusion Policy	RegNetY-3.2GF 39	C&L	95.2	99.7

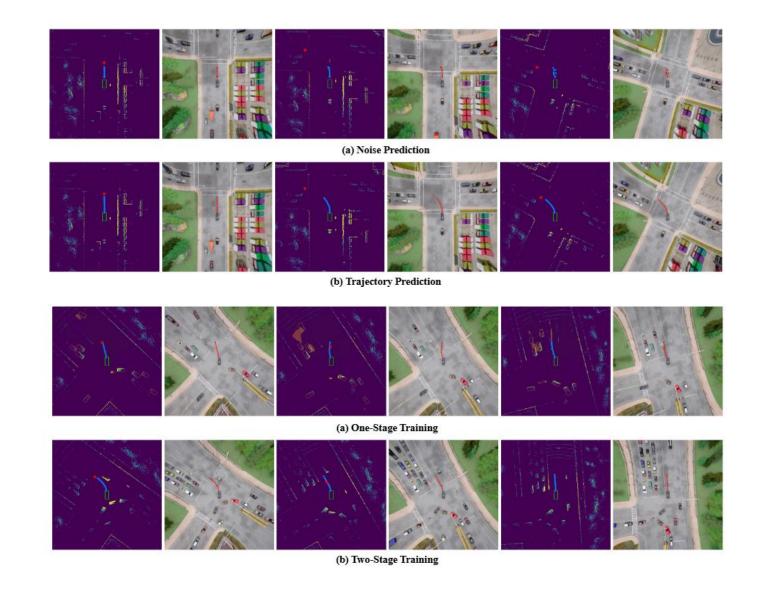
Visualization


Left: Visualization in CARLA Simulator. In both the LiDAR and scene visualizations, blue points represent the predicted trajectory, while red points in the LiDAR view denote the target waypoints. **Right: Visualization in Navtest benchmark.** Red trajectories denote the predicted paths of each method, while green trajectory corresponds to the ground truth.

Visualization

◆ Ablation Study

Type	Method	DS	RC	IS
Base	DiffE2E	82.9	96.2	0.86
Input	w/o ego state w/o command	68.9 69.6	88.8 93.8	0.81
Component	w/o GRU	66.8	75.5	0.88
	Full Diffusion	70.1	91.1	0.76
T	Full Discrimination	70.3	83.5	0.86
Training Paradigm	One-Stage Training	18.2	21.8	0.79
	Two-Stage Training	82.9	96.2	0.86
0.4.4	Noise Prediction	20.1	27.2	0.72
Output	Trajectory Prediction	82.9	96.2	0.86


Component & Training Ablation: Removing ego state, navigation command, or GRU sharply reduces performance, confirming their necessity. The hybrid decoder and two-stage training are essential—single-stage training collapses and leads to unstable driving. Direct trajectory prediction works best.

Denoising Step Ablation: Two denoising steps give the best PDMS, while fewer or more degrade performance, showing that our hybrid modeling allows high-quality trajectories with minimal diffusion iterations.

♦ Ablation Study

Ablation Study of Output Type on the CARLA Longest6 Benchmark

Ablation Study of Training Paradigms on the CARLA Longest6 Benchmark

