

TOMCAT: Test-time Comprehensive Knowledge Accumulation for Compositional Zero-Shot Learning

0

Presenter: Xudong Yan

(--)

Date: 2025.11.3

03 Task Introduction

Compositional Zero-shot Learning

Definition

Compositional Zero-Shot Learning (CZSL) aims to recognize novel attribute-object compositions based on the knowledge learned from seen ones during training.

Key Scientific Problem

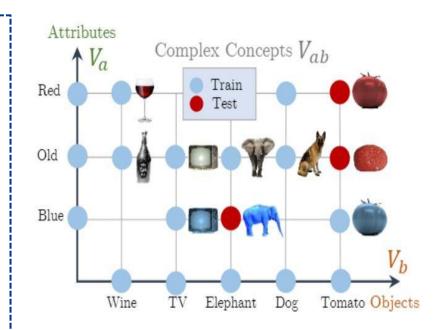
- **Compositional**: How to model the relationship between attributes and objects.
- (2) **Zero-Shot Learning**: How to bridge the gap between seen and unseen compositions.

Existing Challenges

- (1) There exists label space shift between seen and unseen compositions. Using test-time images remains a big challenge.
- (2) The seen and unseen compositions in CZSL share strong information, but the recombination of attibutes and objects results in label changes.

• How can we solve them?

- Using training data to obtain knowledge of seen compositions.
- Using test data to optimize the prototypes in the label space.
- Recording historical samples to obtain visual knowledge.



04 Research Method

TOMCAT : Test-time Comprehensive Knowledge Accumulation for Compositional Zero-Shot Learning

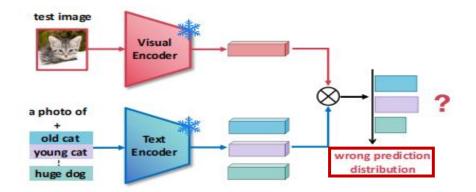
Motivation

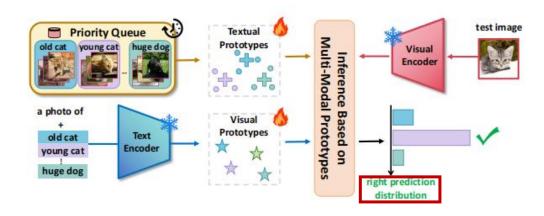
Existing CZSL methods focus on training phase, and they fail to do this:

Model keeps frozen at test-time, so they fail to leverage test images to overcome label space shift.

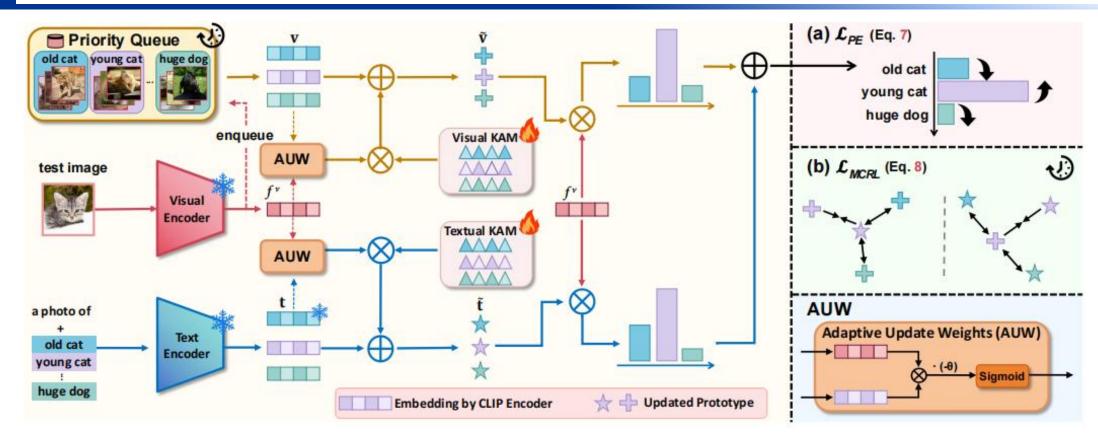
Key Points

- Using entropy loss to optimize seen and unseen compositions.
- Using historical images and label to get multimodal prototypes.
- Updating prototypes based on similarity
- Using multimodal collaborative learning for constraint





Research Method

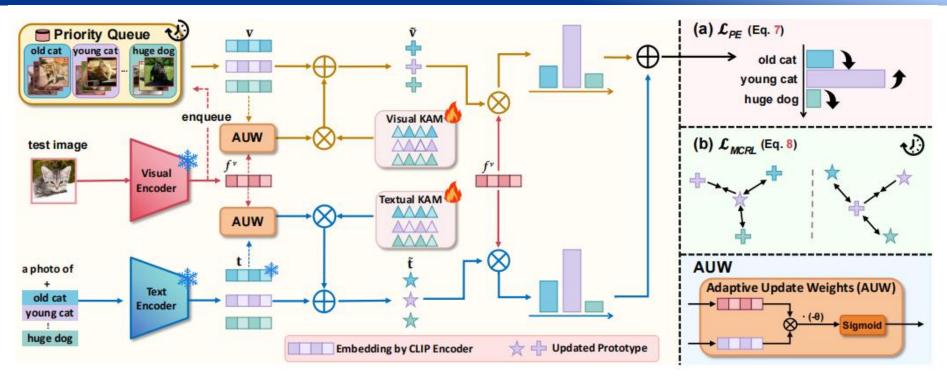


Calculating Multimodal Prototypes:

$$\mathbf{t} = [\mathbf{t}_{c_1}, \mathbf{t}_{c_2}, \dots, \mathbf{t}_{c_{|C^{te}|}}]^{\top} \qquad \Delta \mathbf{t} = [\Delta \mathbf{t}_{c_1}, \Delta \mathbf{t}_{c_2}, \dots, \Delta \mathbf{t}_{c_{|C^{te}|}}]^{\top} \qquad w_c = \sigma(-\theta \cdot s_c) \;, \quad s_c = \cos(f^v, \mathbf{t}_c)$$

$$\mathbf{v} = [\mathbf{v}_{c_1}, \mathbf{v}_{c_2}, \dots, \mathbf{v}_{c_{|C^{te}|}}]^{\top} \qquad \Delta \mathbf{v} = [\Delta \mathbf{v}_{c_1}, \Delta \mathbf{v}_{c_2}, \dots, \Delta \mathbf{v}_{c_{|C^{te}|}}]^{\top} \qquad \tilde{\mathbf{t}} = [\tilde{\mathbf{t}}_{c_1}, \tilde{\mathbf{t}}_{c_2}, \dots, \tilde{\mathbf{t}}_{c_{|C^{te}|}}]^{\top} \;, \quad \tilde{\mathbf{t}}_c = \frac{\mathbf{t}_c + w_c \Delta \mathbf{t}_c}{||\mathbf{t}_c + w_c \Delta \mathbf{t}_c||}$$

Research Method



Entropy loss and multimodal collaborative loss:

$$p(c|x, \tilde{\mathbf{t}}, \tilde{\mathbf{v}}) = \frac{\exp(f^v \cdot \tilde{\mathbf{t}}_c + \alpha \mathcal{A}(f^v, \tilde{\mathbf{v}}_c))}{\sum_{c' \in C^{te}} \exp(f^v \cdot \tilde{\mathbf{t}}_{c'} + \alpha \mathcal{A}(f^v, \tilde{\mathbf{v}}_{c'}))} \qquad \mathcal{L}_{MCRL} = -\frac{1}{2|C^{te}|} \sum_{c \in C^{te}} \left(\log \frac{\exp(\cos(\tilde{\mathbf{t}}_c, \tilde{\mathbf{v}}_c)/\tau)}{\sum_{c' \in C^{te}} \exp(\cos(\tilde{\mathbf{t}}_c, \tilde{\mathbf{v}}_{c'})/\tau)} \right) \qquad \mathcal{L}_{MCRL} = -\frac{1}{2|C^{te}|} \sum_{c \in C^{te}} \left(\log \frac{\exp(\cos(\tilde{\mathbf{t}}_c, \tilde{\mathbf{v}}_c)/\tau)}{\sum_{c' \in C^{te}} \exp(\cos(\tilde{\mathbf{t}}_c, \tilde{\mathbf{v}}_{c'})/\tau)} \right) \qquad \mathcal{L}_{MCRL} = -\frac{1}{2|C^{te}|} \sum_{c \in C^{te}} \left(\log \frac{\exp(\cos(\tilde{\mathbf{t}}_c, \tilde{\mathbf{v}}_c)/\tau)}{\sum_{c' \in C^{te}} \exp(\cos(\tilde{\mathbf{t}}_c, \tilde{\mathbf{v}}_{c'})/\tau)} \right)$$

$$\mathcal{L}_{PE} = -\sum_{c \in C^{te}} p(c|x, \tilde{\mathbf{t}}_c, \tilde{\mathbf{v}}_c) \log p(c|x, \tilde{\mathbf{t}}_c, \tilde{\mathbf{v}}_c)$$

$$+\log \frac{\exp\left(\cos(\tilde{\mathbf{t}}_c, \tilde{\mathbf{v}}_c)/\tau\right)}{\sum_{c' \in C^{te}} \exp\left(\cos(\tilde{\mathbf{t}}_{c'}, \tilde{\mathbf{v}}_c)/\tau\right)}\right)$$

Methods		UT-	Zappos		MIT-States			C-GQA				
Wethods	AUC	HM	Seen	Unseen	AUC	HM	Seen	Unseen	AUC	HM	Seen	Unseen
				Closed-v	vorld R	esults						
CLIP [43] (ICML'21)	5.0	15.6	15.8	49.1	11.0	26.1	30.2	46.0	1.4	8.6	7.5	25.0
CoOp [62] (IJCV'22)	18.8	34.6	52.1	49.3	13.5	29.8	34.4	47.6	4.4	17.1	20.5	26.8
Co-CGE [32] (TPAMI'22)	36.3	49.7	63.4	71.3	17.0	33.1	46.7	45.9	5.7	18.9	34.1	21.2
CSP [37] (ICLR'23)	33.0	46.6	64.2	66.2	19.4	36.3	46.6	49.9	6.2	20.5	28.8	26.8
DFSP [30] (CVPR'23)	36.0	47.2	66.7	71.7	20.6	37.3	46.9	52.0	10.5	27.1	38.2	32.0
GIPCOL [51] (WACV'24)	36.2	48.8	65.0	68.5	19.9	36.6	48.5	49.6	7.1	22.5	31.9	28.4
Troika [12] (CVPR'24)	41.7	54.6	66.8	73.8	22.1	39.3	49.0	53.0	12.4	29.4	41.0	35.7
CDS-CZSL [25] (CVPR'24)	39.5	52.7	63.9	74.8	22.4	39.2	50.3	52.9	11.1	28.1	38.3	34.2
PLID [3] (ECCV'24)	38.7	52.4	67.3	68.8	22.1	39.0	49.7	52.4	11.0	27.9	38.8	33.0
TOMCAT (Ours)	48.3	60.2	74.5	72.8	22.6	39.5	50.2	53.0	11.1	28.5	37.7	34.2
				Open-w	orld Re	sults						
CLIP [43] (ICML'21)	2.2	11.2	15.7	20.6	3.0	12.8	30.1	14.3	0.3	4.0	7.5	4.6
CoOp [62] (IJCV'22)	13.2	28.9	52.1	31.5	2.8	12.3	34.6	9.3	0.7	5.5	21.0	4.6
Co-CGE [32] (TPAMI'22)	28.4	45.3	59.9	56.2	5.6	17.7	38.1	20.0	0.9	5.3	33.2	3.9
CSP [37] (ICLR'23)	22.7	38.9	64.1	44.1	5.7	17.4	46.3	15.7	1.2	6.9	28.7	5.2
DFSP [30] (CVPR'23)	30.3	44.0	66.8	60.0	6.8	19.3	47.5	18.5	2.4	10.4	38.3	7.2
GIPCOL [51] (WACV'24)	23.5	40.1	65.0	45.0	6.3	17.9	48.5	16.0	1.3	7.3	31.6	5.5
Troika [12] (CVPR'24)	33.0	47.8	66.4	61.2	7.2	20.1	48.8	18.7	2.7	10.9	40.8	7.9
CDS-CZSL* [25] (CVPR'24)	32.1	48.0	64.7	60.4	-	-	-	-	2.6	10.9	38.2	8.0
PLID [3] (ECCV'24)	30.8	46.6	67.6	55.5	7.3	20.4	49.1	18.7	2.5	10.6	39.1	7.5
TOMCAT (Ours)	43.7	57.9	74.1	65.8	8.2	21.7	49.2	21.0	2.9	11.9	37.7	9.1

Table 3: Abaltion study of our proposed modules on UT-Zappos and MIT-States. Queue means visual priority queue. T- and V- KAM denote textual and visual KAM. AUW is adaptive update weights.

Module			UT-Zappos				MIT-States				
Queue	T-KAM	V-KAM	AUW	AUC	HM	Seen	Unseen	AUC	HM	Seen	Unseen
				43.57	55.54	68.72	74.30	22.12	38.97	49.50	52.61
1				43.28	55.54	68.43	74.14	22.12	39.15	49.45	52.88
	✓			45.68	58.22	74.39	69.01	22.18	39.22	49.50	52.95
1		1		43.28	55.54	68.43	74.14	22.32	39.32	49.54	52.93
1	\	✓		46.64	58.83	76.44	68.38	22.34	39.39	49.58	52.93
1	✓	1	V	48.31	60.18	74.99	72.77	22.55	39.45	50.32	52.95

Table 4: Ablation study of our designed loss on UT-Zappos and MIT-States.

$\mathcal{L}oss$		UT-Z	appos	MIT-States		
\mathcal{L}_{PE}	\mathcal{L}_{MCRL}	AUC	HM	AUC	HM	
		43.57	55.54	22.12	38.97	
1		44.59	57.29	22.35	39.32	
	√	42.46	53.97	22.29	39.42	
1	✓	48.31	60.18	22.55	39.45	

Table 5: Influence of initialization strategies of KAMs on UT-Zappos and MIT-States.

Initialization	UT-Z	appos	MIT-States		
minumenton	AUC	HM	AUC	HM	
Uniform Random	43.49	56.23	21.81	38.59	
Normal Random	45.50	57.98	21.32	38.36	
Random Walking	47.08	59.12	22.14	39.16	
All Zeros	48.31	60.18	22.55	39.45	

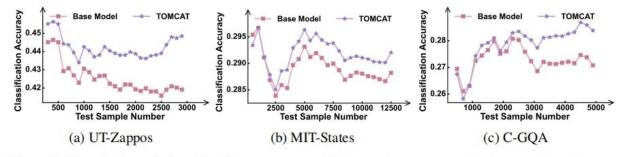


Figure 5: Trend of top-1 classification accuracy with increasing test sample size on three datasets.

Figure 6: Case study on UT-Zappos and MIT-States. We compare TOMCAT (Ours) with the base model (BM) after training. The successful and failure results are marked in green and red, respectively.

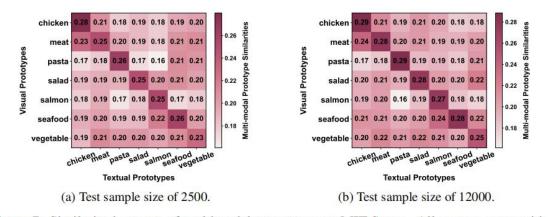


Figure 7: Similarity heatmap of multimodal prototypes on MIT-States. All unseen compositions consisting of the attribute cooked and its corresponding objects (e.g., chicken, meat...) are selected.

Thanks for Listening!

Persenter: Xudong Yan

Date: 2025.11.3