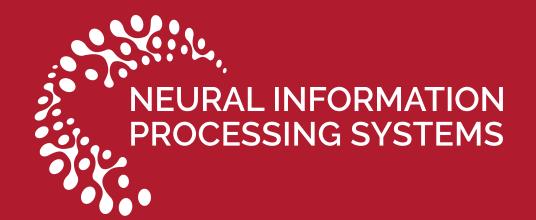
Conditional Distribution Compression via the Kernel Conditional Mean Embedding

Dominic Broadbent Nick Whiteley Robert Allison

Tom Lovett 2



Motivation

- Distribution compression seeks to replace large datasets with smaller representative sets that preserve their key statistical properties, reducing the financial, environmental, and time costs of storage and computation.
- Existing methods have been developed for unlabelled data, targeting the distribution \mathbb{P}_X [1, 2, 3]. However, many real-world datasets are labelled, where preserving relationships between inputs and outputs is essential.
- Depending on the downstream task, one may wish to preserve the joint distribution $\mathbb{P}_{X,Y}$, which captures dependencies between features and labels, or the conditional distribution $\mathbb{P}_{Y|X}$ which governs predictive behaviour.

Motivation

- Distribution compression seeks to replace large datasets with smaller representative sets that preserve their key statistical properties, reducing the financial, environmental, and time costs of storage and computation.
- Existing methods have been developed for unlabelled data, targeting the distribution \mathbb{P}_X [1, 2, 3]. However, many real-world datasets are labelled, where preserving relationships between inputs and outputs is essential.
- Depending on the downstream task, one may wish to preserve the joint distribution $\mathbb{P}_{X,Y}$, which captures dependencies between features and labels, or the conditional distribution $\mathbb{P}_{Y|X}$ which governs predictive behaviour.

Motivation

- Distribution compression seeks to replace large datasets with smaller representative sets that preserve their key statistical properties, reducing the financial, environmental, and time costs of storage and computation.
- Existing methods have been developed for unlabelled data, targeting the distribution \mathbb{P}_X [1, 2, 3]. However, many real-world datasets are labelled, where preserving relationships between inputs and outputs is essential.
- Depending on the downstream task, one may wish to preserve the joint distribution $\mathbb{P}_{X,Y}$, which captures dependencies between features and labels, or the conditional distribution $\mathbb{P}_{Y|X}$ which governs predictive behaviour.

• Distribution compression algorithms optimise the compressed set $\mathcal{C} = \{m{z}_i\}_{i=1}^m$ to minimise the MMD to the empirical distribution $\hat{\mathbb{P}}_X$ of the target dataset $\mathcal{D} = \{ m{x}_i \}_{i=1}^n$:

$$egin{align} ext{MMD}^2(\hat{\mathbb{P}}_X,\hat{\mathbb{P}}_Z) := \|\hat{\mu}_X - \hat{\mu}_Z\|_{\mathcal{H}_k}^2 \ &= \sum_{i,j=1}^n k(oldsymbol{x}_i,oldsymbol{x}_j) - 2\sum_{i,j=1}^{n,m} k(oldsymbol{x}_i,oldsymbol{z}_j) + \sum_{i,j=1}^m k(oldsymbol{z}_i,oldsymbol{z}_j), \end{split}$$

where $m \ll n$, and we denote μ_X as the kernel mean embedding of the distribution \mathbb{P}_X . The KME μ_X lies in the Reproducing Kernel Hilbert Space (RKHS) \mathcal{H}_k induced by the positive definite kernel $k:\mathcal{X} imes\mathcal{X} o\mathbb{R}$, which is defined on the feature space \mathcal{X} .

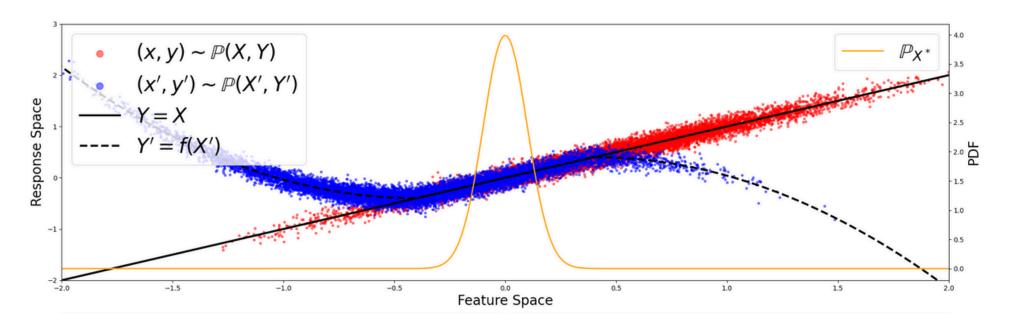
• Given an additional kernel $\,l:\mathcal{Y} imes\mathcal{Y} o\mathbb{R}\,$ defined on the response space $\,\mathcal{Y}$ we induce the RKHS $\mathcal{H}_k \otimes \mathcal{H}_l$. We can then extend existing distribution compression algorithms to optimise a compressed set $\mathcal{C} = \{(\boldsymbol{z}_i, \boldsymbol{w}_i)\}_{i=1}^m$ which minimises the Joint MMD [5] to the empirical distribution of the target dataset $\mathcal{D} = \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n$:

$$egin{aligned} ext{JMMD}^2(\hat{\mathbb{P}}_{X,Y},\hat{\mathbb{P}}_{Z,W}) &:= \|\hat{\mu}_{X,Y} - \hat{\mu}_{Z,W}\|_{\mathcal{H}_{k\otimes l}}^2 \ &= \sum_{i,j=1}^n k(oldsymbol{x}_i,oldsymbol{x}_j) l(oldsymbol{y}_i,oldsymbol{y}_j) - 2\sum_{i,j=1}^{n,m} k(oldsymbol{x}_i,oldsymbol{z}_j) l(oldsymbol{y}_i,oldsymbol{w}_j) + \sum_{i,j=1}^m k(oldsymbol{z}_i,oldsymbol{z}_j) l(oldsymbol{w}_i,oldsymbol{w}_j). \end{aligned}$$

• In order to extend distribution compression to the conditional distribution, we first require a notion of conditional disrepancy, for this we introduce the AMCMD:

$$ext{AMCMD}\left(\mathbb{P}_{X^*}, \mathbb{P}_{Y|X}, \mathbb{P}_{Y'|X'}
ight) := \sqrt{\mathbb{E}_{oldsymbol{x} \sim \mathbb{P}_{X^*}} \left[\|\mu_{Y|X=oldsymbol{x}} - \mu_{Y'|X'=oldsymbol{x}}\|_{\mathcal{H}_l}^2
ight]}$$

where \mathbb{P}_{X^*} is a weighting distribution, and $\mu_{Y|X}:\mathcal{X} o\mathcal{H}_l$ is the *kernel conditional* mean embedding (KCME). The KCME is a vector-valued function, which takes as inputs conditioning values $m{x} \in \mathcal{X}$, and outputs KMEs $\mu_{Y|X=m{x}}$ lying in \mathcal{H}_l .



Theorem - The AMCMD is a proper metric

Suppose the response kernel $l(\cdot,\cdot)$ is characteristic, that $\,\mathbb{P}_X\,$, $\,\mathbb{P}_{X'}\,$, and $\,\mathbb{P}_{X^*}\,$ are absolutely continuous with respect to eachother, and that $\mathbb{P}(\cdot \mid X)$ and $\mathbb{P}(\cdot \mid X')$ admit regular versions. Then, $\mathrm{AMCMD}\left(\mathbb{P}_{X^*},\mathbb{P}_{Y|X},\mathbb{P}_{Y'|X'}
ight)=0\;\; ext{if and only if, for almost all}\;m{x}\in\mathcal{X}$ wrt \mathbb{P}_{X^*} , $\mathbb{P}_{Y|X=oldsymbol{x}}(A)=\mathbb{P}_{Y'|X'}(A)$ for all $A\in\mathscr{Y}$.

Moreover, assuming the Radon-Nikodym derivatives $\frac{d\mathbb{P}_{X^*}}{d\mathbb{P}_{Y}}$, $\frac{d\mathbb{P}_{X^*}}{d\mathbb{P}_{Y}}$, and $\frac{d\mathbb{P}_{X^*}}{d\mathbb{P}_{Y}''}$ are bounded, then the triangle inequality is satisfied, i.e.

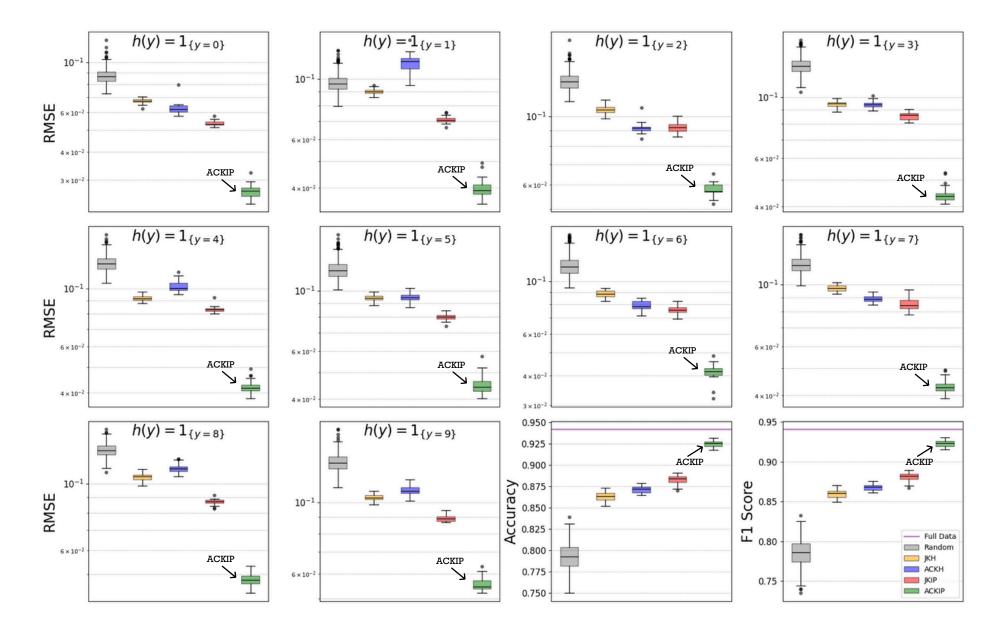
$$\operatorname{AMCMD}\left(\mathbb{P}_{Y|X},\mathbb{P}_{Y''|X''}
ight) \leq \operatorname{AMCMD}\left(\mathbb{P}_{Y|X},\mathbb{P}_{Y'|X'}
ight) + \operatorname{AMCMD}\left(\mathbb{P}_{Y'|X'},\mathbb{P}_{Y''|X''}
ight).$$

• We can now optimise a compressed set $\mathcal{C} = \{(\boldsymbol{z}_i, \boldsymbol{w}_i)\}_{i=1}^m$ which minimises the AMCMD to the empirical conditional distribution of the target dataset $\mathcal{D} = \{(\boldsymbol{x}_i, \boldsymbol{y}_i)\}_{i=1}^n$:

$$ext{AMCMD}^2\left(\hat{\mathbb{P}}_{X^*},\hat{\mathbb{P}}_{Y|X},\hat{\mathbb{P}}_{Z|W}
ight) = rac{1}{q}\sum_{i=1}^q \left\|\hat{\mu}_{Y|X=oldsymbol{x}_i^*} - \hat{\mu}_{Z|W=oldsymbol{x}_i^*}
ight\|_{\mathcal{H}_l}^2.$$

• We can obtain a closed-form representation of this, however it has $\mathcal{O}(n^3)$ cost. For distribution compression, it is natural to choose $\mathbb{P}_{X^*} = \mathbb{P}_X$, then by applying the tower property, we can reduce to O(n) cost, enabling linear-time conditional distribution compression.

• The KCME has many important applications. In particular it may be used as a regressor and classifier. In our work, we investigate how compression effects these downstream tasks. Below, we show results on MNIST after 98% compression:



References

- [1] Yutian Chen, Max Welling, and Alex Smola. Super-samples from kernel herding. UAI 2010
- [2] Michael Arbel, Anna Korba, Adil Salim, and Arthur Gretton. Maximum mean discrepancy gradient flow, NeurIPS 2019
- [3] Raaz Dwivedi and Lester Mackey. Kernel thinning. COLT 2021
- [4] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel two-sample test, JMLR 2012
- [5] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I. Jordan. Deep transfer learning with joint adaptation networks, ICML 2017