

Domain-Specific Pruning of Large Mixture-of-Experts

Models with Few-shot Demonstrations

Zican Dong^{1,2}*, Han Peng^{1,2}*, Peiyu Liu³†, Wayne Xin Zhao^{1,2}†, Dong Wu⁵, Feng Xiao⁴, Zhifeng Wang⁴

¹ Gaoling School of Artificial Intelligence, Renmin University of China
² Beijing Key Laboratory of Research on Large Models and Intelligent Governance

³ University of International Business and Economics

⁴ YanTron Technology Co. Ltd ⁵ EBTech Co. Ltd

1. Background

- Mixture-of-Experts (MoE) architectures have demostrated efficiency of scaling parameters without proportional computational overhead.
- The deployment of large MoE models imposes substantial memory requirements.
 - DeepSeek-R1 (671B)
 - BF16: 1500GB -> 4 × 8 A800/H800
 - FP8: $750GB -> 2 \times 8 H800$
- Necessary of MoE compression techniques.

MoE Architecture

$$ar{m{h}}_t^l = \sum_{i=1}^N g_{i,t}^l \cdot \mathrm{E}_i^l(m{h}_t^l), \quad ilde{m{h}}_t^l = m{h}_t^l + ar{m{h}}_t^l$$

Expert Metrics

Frequency

Gating Score

$$f_i^l = \sum_{n=1}^M \sum_{t=1}^{T_n} (g_{i,n,t}^l > 0)$$
 $r_i^l = \sum_{n=1}^M \sum_{t=1}^{T_n} g_{i,n,t}^l$

2. Empirical Analysis

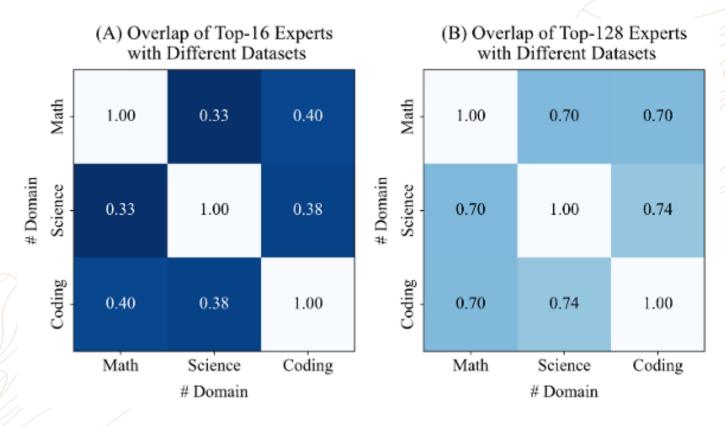
Expert Specialization Across Domains

Domain	AIME24	GPQA	LiveCodeBench
Full	77.08	70.91	63.32
Math Code	67.33 (-9.75) 78.67 (+1.59)	69.19 (-1.72) 71.72 (+0.81)	65.27 (+1.95) 55.68 (-6.64)
Science	79.33 (+2.25)	59.09 (-11.82)	61.07 (-2.25)

Large MoE models contain domain-specialized experts that are predominantly activated in their respective domains.

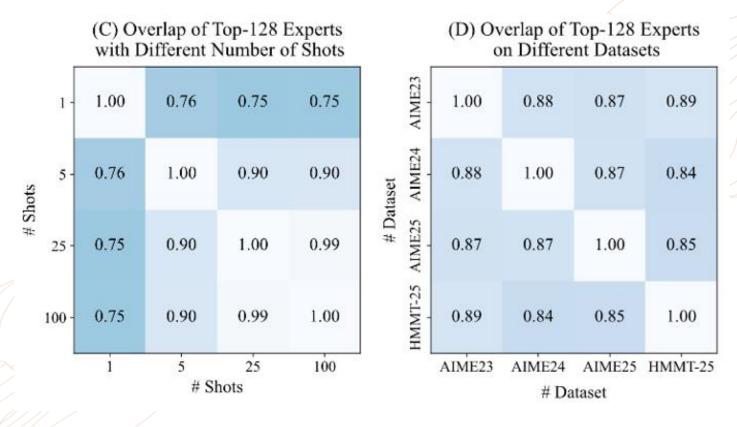
2. Empirical Analysis

Expert Specialization Across Domains



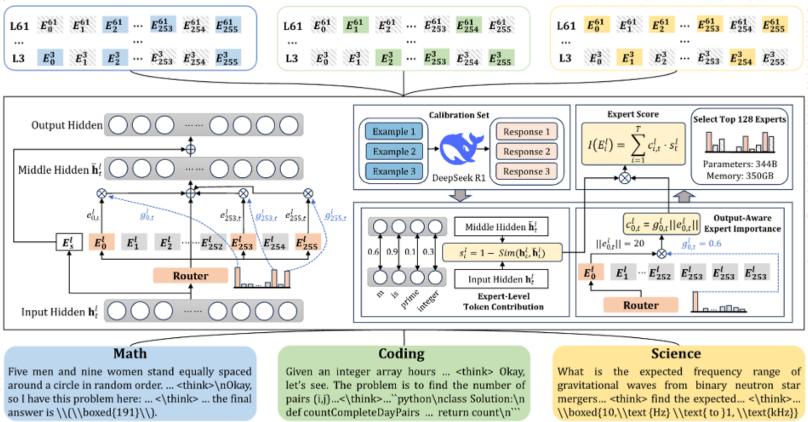
Domain-specific experts play a critical role in the relevant domain but are redundant for other domains.

Expert Locality Within One Domain



- Domain-specific experts can be identifies with few demonstrations.
- Domain-specific expert activation patterns are largely transferable within the same domain.

3. Method



•Collecting expert activation statistics of the MoE model on target-domain demonstrations and selecting Top-M experts with the largest expert scores.

Expert Score

$$I(\mathbf{E}_i^l) = \sum_{t=1}^T c_{i,t}^l \cdot s_t^l.$$

Mixed-Domain Pruning

$$I_{mix}(\mathbf{E}_i^l) = \sum_{\tau \in \mathcal{T}} (I_{\tau}(\mathbf{E}_i^l) / \sum_{j=1}^N I_{\tau}(\mathbf{E}_j^l)).$$

Output-Aware Expert Importance Assessment

Analysis: Each expert's contribution to the final output is bounded by the product of its gating value and the L2 norm of its output.

$$\begin{split} \bar{\boldsymbol{h}}_t^l &= \sum_{i=1}^N g_{i,t}^l \cdot \boldsymbol{e}_{i,t}^l = \sum_{i=1}^N g_{i,t}^l \|\boldsymbol{e}_{i,t}^l\| \cdot \frac{\boldsymbol{e}_{i,t}^l}{\|\boldsymbol{e}_{i,t}^l\|}, \\ \|\bar{\boldsymbol{h}}_t^l\| &\leq \sum_{i=1}^N \left\|g_{i,t}^l\|\boldsymbol{e}_{i,t}^l\| \cdot \frac{\boldsymbol{e}_{i,t}^l}{\|\boldsymbol{e}_{i,t}^l\|} \right\| = \sum_{i=1}^N g_{i,t}^l\|\boldsymbol{e}_{i,t}^l\|. \end{split}$$

Output-Aware Expert Importance

$$c_{i,t}^l = g_{i,t}^l \| e_{i,t}^l \|, \quad \forall g_{i,t}^l > 0.$$

Expert-Level Token Contribution Estimation

Analysis: When dealing with tokens exhibiting low similarity before and after the MoE module, adjusting their routed experts will induce a substantial distributional shift in their representation

$$s_t^l = 1 - \operatorname{Sim}(\boldsymbol{h}_t^l, \tilde{\boldsymbol{h}}_t^l).$$

4. Experiment

Model	Method	Mix	#E	AIME-24	AIME-25	FMMT	LiveCode	GPQA	USMLE	FinIQ	A-OS	Avg
	Full	-	256	77.08	66.67	44.38	63.32	70.91	92.66	82.1	40.51	67.20
	Random	×	64	0.00	0.00	0.00	0.00	26.09	0.00	0.00	0.00	3.26
	Frequency	×	64	0.00	0.00	0.00	0.00	17.68	0.00	0.00	2.78	2.58
	Gating Score	×	64	2.67	1.33	2.67	14.97	46.83	0.86	0.00	0.69	8.75
	M-SMoE	×	64	0.00	0.00	0.00	0.00	12.12	0.00	0.00	0.00	1.52
	EASY-EP	×	64	72.81	55.10	38.02	42.51	67.47	26.63	33.90	27.26	45.22
DeepSeek -R1	Random	×	128	8.33	6.67	3.33	20.96	34.95	57.66	0.00	7.64	17.44
-K1	Frequency	×	128	19.33	13.33	7.33	36.08	59.60	61.51	26.40	29.16	31.59
	Gating Score	×	128	70.10	55.52	36.15	47.60	63.78	80.36	66.50	31.94	56.49
	M-SMoE	×	128	5.33	6.00	3.33	25.75	24.75	52.63	39.60	19.44	22.10
	EASY-EP	×	128	79.17	68.33	45.31	61.11	70.12	91.67	78.80	37.92	66.55
	Frequency	√	128	21.33	10.00	6.00	7.49	41.45	78.55	62.14	11.81	29.85
	Gating Score	✓	128	29.33	21.33	18.00	22.75	41.69	62.06	27.29	30.56	31.67
	M-SMoE	\checkmark	128	6.67	2.00	4.67	4.19	32.32	72.00	19.10	6.25	18.40
	EASY-EP	✓	128	75.94	61.98	42.50	57.63	70.36	91.20	57.95	34.17	61.47
	Full	-	256	55.73	47.71	28.75	48.50	66.87	87.51	64.22	33.33	54.08
	Random	×	64	0.00	0.00	0.00	0.00	26.87	0.39	0.00	0.69	3.49
	Frequency	×	64	31.35	34.06	15.73	1.95	45.25	40.13	61.96	22.74	31.65
	Gating Score	×	64	43.96	25.10	23.12	14.97	51.52	78.68	64.20	0.00	37.69
	M-SMoE	×	64	16.67	13.33	3.33	1.20	22.22	12.18	47.00	21.52	17.18
	EASY-EP	×	64	53.12	41.56	28.85	27.99	57.35	84.57	72.50	27.55	49.19
DeepSeek -V3-0324	Random	×	128	1.33	0.67	0.00	11.38	34.95	53.5	53.66	18.75	21.78
-V3-U324	Frequency	×	128	55.73	42.60	30.10	36.08	63.54	84.29	66.84	31.71	51.36
	Gating Score	×	128	55.42	45.10	30.94	47.60	63.78	84.62	67.76	35.42	53.83
	M-SMoE	×	128	48.00	38.67	28.67	30.53	55.82	86.72	66.60	33.33	48.54
	EASY-EP	×	128	55.21	46.88	31.56	46.71	65.25	86.72	63.58	37.08	54.12
	Frequency	✓	128	51.35	37.60	24.27	17.07	55.90	83.47	66.80	36.25	46.59
	Gating Score	✓	128	53.75	40.10	27.19	28.74	58.88	83.86	67.74	34.58	49.36
	M-SMoE	✓	128	43.33	30.00	20.00	7.19	52.53	82.33	62.20	29.17	40.84
	EASY-EP	✓	128	57.81	46.56	33.33	40.72	64.95	85.00	72.26	38.74	54.92

- •EASY-EP can achieve better

 performances than other method and achieves comparable performances to the full model with half experts.
 - •Non-reasoning models exhibit greater robustness after pruning.
- •EASY-EP preserve performance well under mixed-domain pruning settings.

Ablation study

Both components in EASY-EP are important.

Method	Metric	Experts	AIME-24	AIME-25	HMMT	LiveCode	GPQA	A-OS
Ours	$g_{i,t}^l \ \boldsymbol{e}_{i,t}^l \ \cdot s_t^l$	64	72.81	55.33	36.00	42.51	67.47	27.26
w/o Token	$g_{i,t}^{l} \ \boldsymbol{e}_{i,t}^{l} \ $	64	65.33	49.33	31.33	27.54	56.57	21.53
w/o norm	$g_{i,t}^l \cdot s_t^l$	64	70.00	40.00	23.33	19.76	61.11	18.75
w/o both	$g_{i,t}^l$	64	2.67	1.33	2.67	0.00	20.20	0.69

Generalization Capacities

A certain generalization capy, especially in similar domains.

Domain	AIME24	LiveCodeBench	GPQA	Agent-OS	USMLE	FinIQ
Math	79.17 38.00 64.64	46.11	46.91	3.47	46.43	58.20
Coding		61.11	39.90	15.97	41.79	53.00
Science		53.59	70.12	4.17	75.88	57.50

4. Experiment

Ablation study

Method	Metric	Experts	AIME-24	AIME-25	HMMT	LiveCode	GPQA	A-OS
Ours	$g_{i,t}^l \ \boldsymbol{e}_{i,t}^l \ \cdot s_t^l$	64	72.81	55.33	36.00	42.51	67.47	27.26
w/o Token	$g_{i,t}^{l} \ \boldsymbol{e}_{i,t}^{l} \ $	64	65.33	49.33	31.33	27.54	56.57	21.53
w/o norm	$g_{i,t}^l \cdot s_t^l$	64	70.00	40.00	23.33	19.76	61.11	18.75
w/o both	$g_{i,t}^l$	64	2.67	1.33	2.67	0.00	20.20	0.69

Both components in EASY-EP are important.

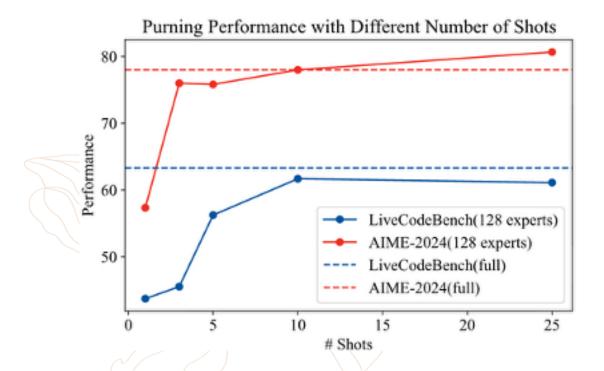
Generalization Capacities

Domain	AIME24	LiveCodeBench	GPQA	Agent-OS	USMLE	FinIQ
Math	79.17	46.11	46.91	3.47	46.43	58.20
Coding	38.00	61.11	39.90	15.97	41.79	53.00
Science	64.64	53.59	70.12	4.17	75.88	57.50

A certain generalization capacity, especially in similar domains.

Number of Demonstrations

Only few demonstrations can achieve comparable performance with the baselines.



Throughput

Compared to the full model, the pruned models presents improved throughputs.

