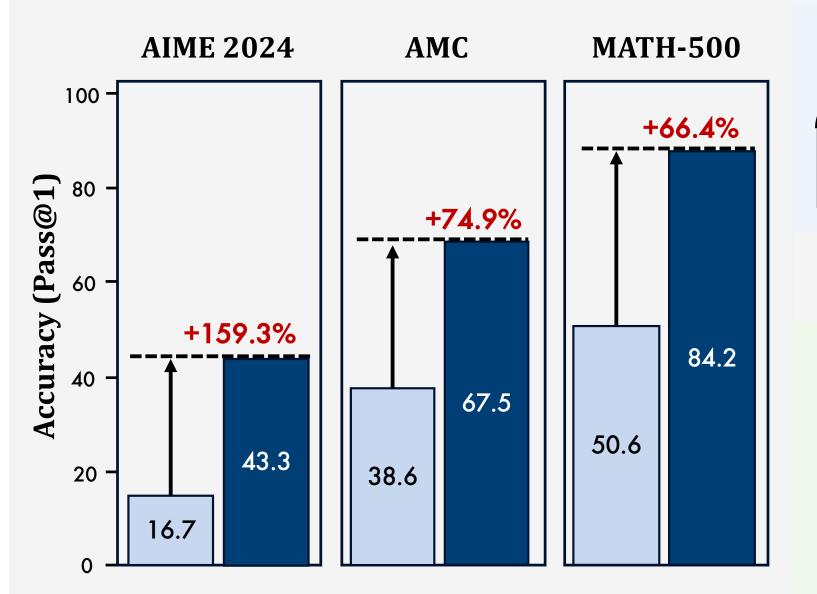
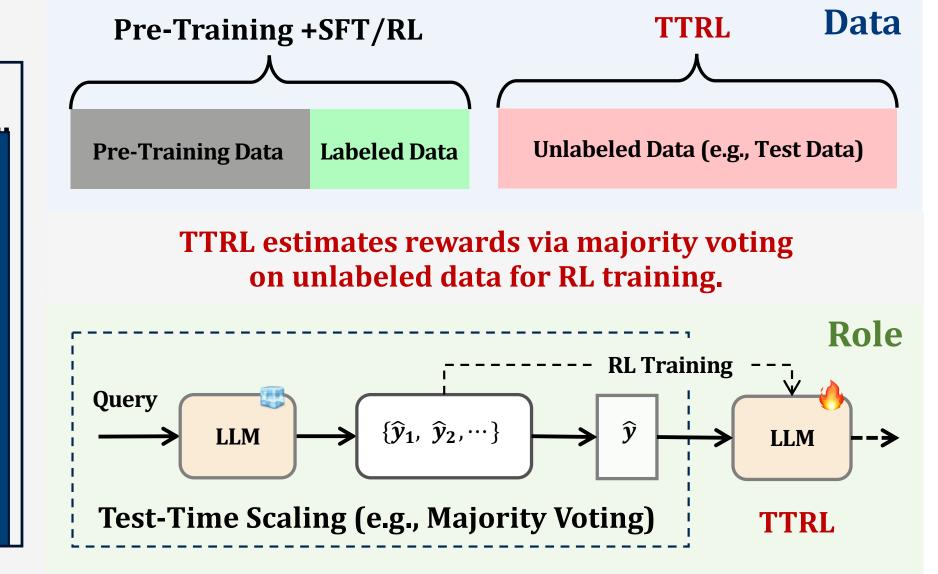


Shanghai Artificial Intelligence Laboratory

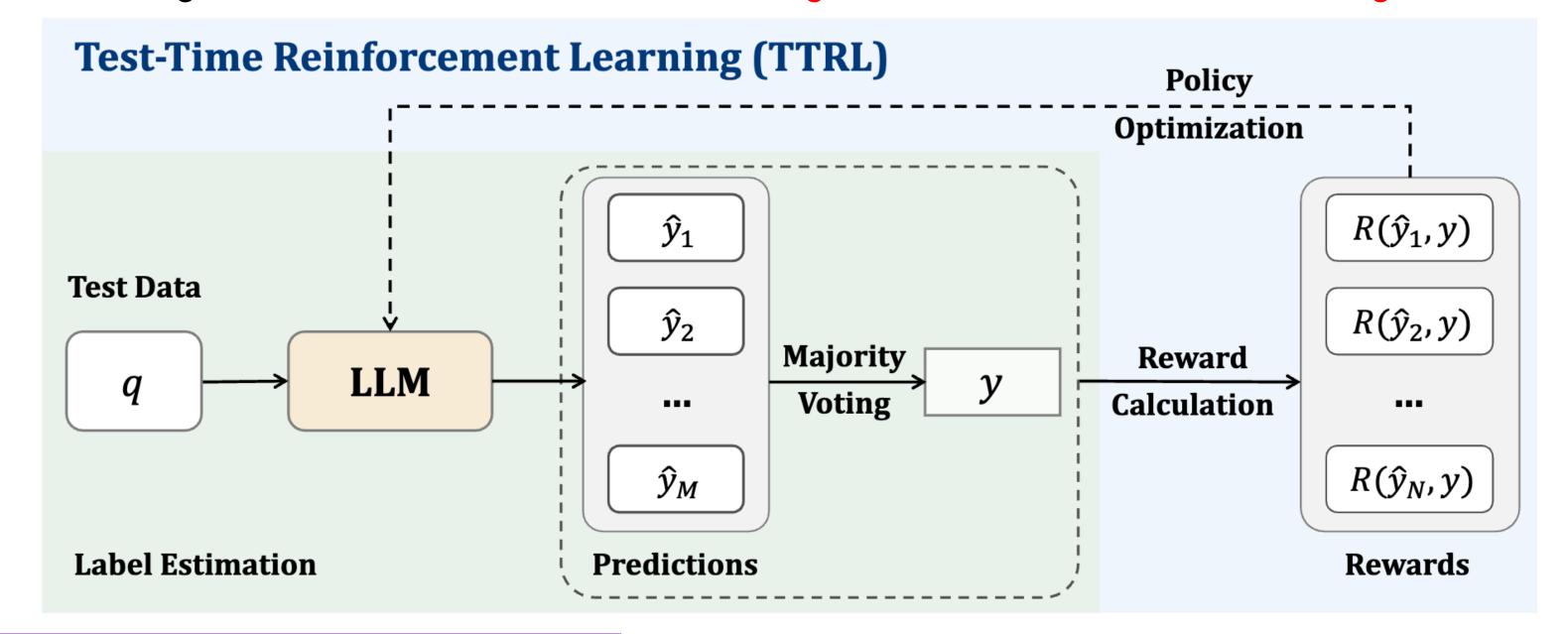
TTRL: Test-Time Reinforcement Learning


Yuxin Zuo^{1,2}*, Kaiyan Zhang¹*, Li Sheng^{1,2}, Shang Qu^{1,2}, Ganqu Cui², Xuekai Zhu¹, Haozhan Li^{1,2}, Yuchen Zhang², Xinwei Long¹, Ermo Hua¹, Biqing Qi², Youbang Sun¹, Zhiyuan Ma¹, Lifan Yuan¹, Ning Ding^{1,2†}, Bowen Zhou^{1,2†}

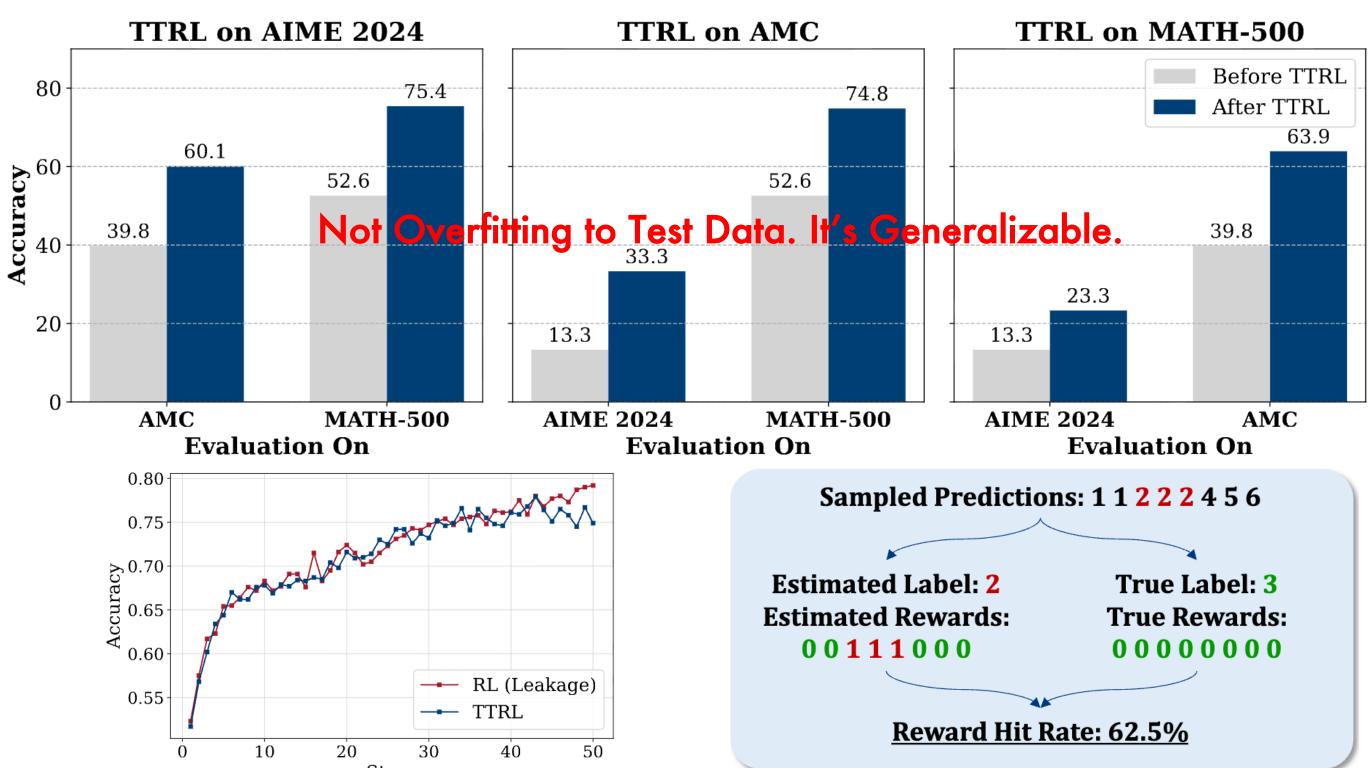

NEURAL INFORMATION PROCESSING SYSTEMS

¹Tsinghua University ²Shanghai Al Lab *Equal Contribution. †Corresponding Authors.

Overview


Scale up RL with unlabeled data to turn more computation into intelligence, and move toward the RL-driven self-evolution method.

Test-Time Reinforcement Learning


We study the problem of training a pre-trained model during test time using RL without ground-truth labels. We call this setting Test-Time Reinforcement Learning.

Experiments & Analysis

Name	AIME 2024	AMC	MATH-500	GPQA	Avg
Math Base Models					
Qwen2.5-Math-1.5B	7.7	28.6	32.7	24.9	23.5
w/TTRL	15.8	48.9	73.0	26.1	41.0
Δ	+8.1	+20.3	+40.3	+1.2	+17.5
	↑ 105.2%	↑ 71.0 %	† 123.2%	$\uparrow 4.8\%$	† 74.4%
Qwen2.5-Math-7B	12.9	35.6	46.7	29.1	31.1
w/TTRL	40.2	68.1	83.4	27.7	54.9
Δ	+27.3	+32.5	+36.7	-1.4	+23.8
	↑ 211.6 %	† 91.3%	↑ 7 8.6%	$\downarrow 4.8\%$	↑ 76.5 %
Vanilla Base Models					
Qwen2.5-7B	7.9	34.8	60.5	31.8	33.8
w/TTRL	23.3	56.6	80.5	33.6	48.5
Δ	+15.4	+21.8	+20.0	+1.8	+14.7
	↑ 194.9%	† 62.6%	↑ 33.1 %	↑ 5.7%	† 43.7%
Qwen2.5-32B	7.9	32.6	55.8	33.2	32.4
w/TTRL	24.0	59.3	83.2	37.7	51.1
Δ	+16.1	+26.7	+27.4	+4.5	+18.7
	† 203.8%	† 81.9%	† 49 .1%	† 13.6%	↑ 57.7 %
Instruct Models					
LLaMA3.1-8B	4.6	23.3	48.6	30.8	26.8
w/TTRL	10.0	32.3	63.7	34.1	35.0
Δ	+5.4	+9.0	+15.1	+3.3	+8.2
	† 117.4%	† 38.6%	† 31.1%	† 10.7%	† 30.6%
Qwen3-8B*	26.9	57.8	82.3	48.1	53.8
w/TTRL	46.7	69.1	89.3	53.0	64.5
Δ	+19.8	+11.3	+7.0	+4.9	+10.8
	† 73.6%	† 19.6%	↑ 8.5%	† 10.2%	† 20.0%

It performs well on 14 models (1.5B - 32B) spanning the Qwen, LLaMA, Mistral, and DeepSeek series.

How Well Can TTRL Perform?
Close to training on the benchmark.

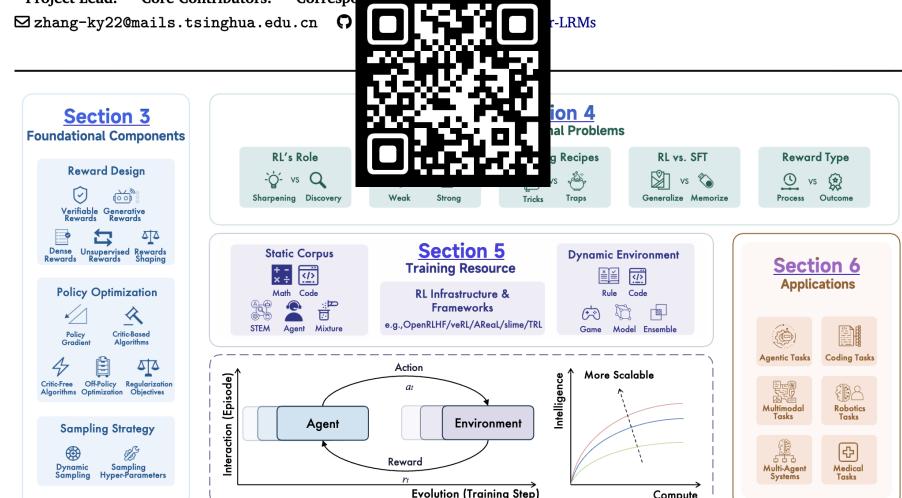
Paper

Code

Why Does TTRL Work?

"Lucky Hit" plays a crucial role.

WeChat


Recent Works

A Survey of Reinforcement Learning for Large Reasoning Models 2025-10-10

A Survey of Reinforcement Learning for Large Reasoning Models

Kaiyan Zhang^{1*†}, Yuxin Zuo^{1*†}, Bingxiang He^{1*}, Youbang Sun^{1*}, Runze Liu^{1*}, Che Jiang^{1*}, Yuchen Fan^{2,3*}, Kai Tian^{1*}, Guoli Jia^{1*}, Pengfei Li^{2,6*}, Yu Fu^{9*}, Xingtai Lv^{1*}, Yuchen Zhang^{2,4*}, Sihang Zeng^{7*}, Shang Qu^{1,2*}, Haozhan Li^{1*}, Shijie Wang^{2*}, Yuru Wang^{1*}, Xinwei Long¹, Fangfu Liu¹, Xiang Xu⁵, Jiaze Ma¹, Xuekai Zhu³, Ermo Hua^{1,2}, Yihao Liu^{1,2}, Zonglin Li², Huayu Chen¹, Xiaoye Qu², Yafu Li², Weize Chen¹, Zhenzhao Yuan¹, Junqi Gao⁶, Dong Li⁶, Zhiyuan Ma⁸, Ganqu Cui², Zhiyuan Liu¹, Biqing Qi^{2‡}, Ning Ding^{1,2‡}, Bowen Zhou^{1,2‡}

- ¹ Tsinghua University ² Shanghai AI Laboratory ³ Shanghai Jiao Tong University ⁴ Peking University
- ⁵ University of Science and Technology of China ⁶ Harbin Institute of Technology ⁷ University of Washington ⁸ Huazhong University of Science and Technology ⁹ University College London
- † Project Lead * Core Contributors ‡ Correspond

Figure 1 | Overview of the survey. We introduce the foundational components of RL for LRMs, along with open problems, training resources, and applications. Central to this survey is a focus on large-scale interactions between language agents and environments throughout long-term evolution.