

Twilight: Adaptive Attention Sparsity with Hierarchical Top-p Pruning

Chaofan Lin, Jiaming Tang, Shuo Yang, Hanshuo Wang, Tian Tang, Boyu Tian, Ion Stoica, Song Han, Mingyu Gao

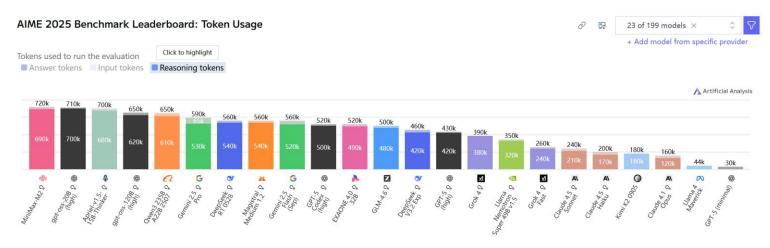
Tsinghua University Massachusetts Institute of Technology University of California, Berkeley

https://github.com/tsinghua-ideal/Twilight

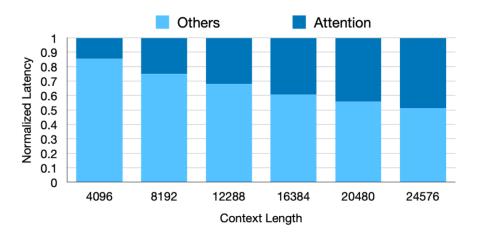
Background

Long-context LLMs are powerful but computationally expensive

- Trend: Long Context windows are becoming the new standard for state-of-the-art LLMs, especially for reasoning models.
- For long context LLM inference, attention dominates the latency.



Reasoning tasks like AIME cost nearly 1M tokens

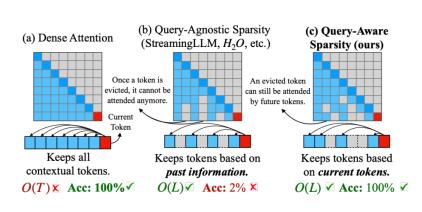


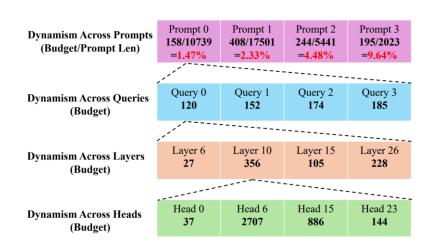
Attention becomes the bottleneck as the sequence length increases

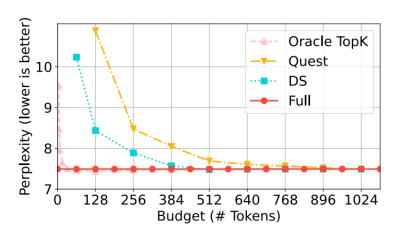
Background

Top-k Sparse Attention to reduce KV cache loading

- Since attention is memory-bound, previous works propose sparse attention, which first estimates attention scores then selectively loads only important tokens.







Previous work (Quest)

The best budget choices vary dynamically across different levels.

Quest: Query-Aware Sparsity for Efficient Long-Context LLM Inference. Tang et al.

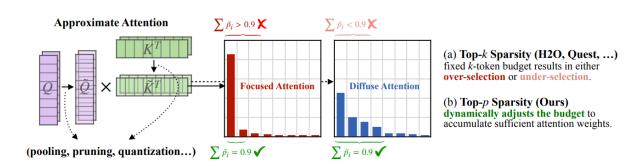
Bringing Top-p Sampling to Sparse Attention

Top-p Sparse Attention is inherently budget-adaptive

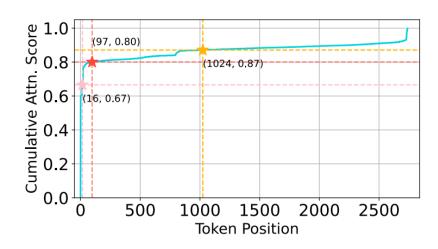
 We argue that the core reason for budget dynamism is the dynamic nature of the attention weight distributions at runtime, thus propose Top-p Sparse Attention.

Definition 3.3 (Oracle Top-p Sparse Attention). Given the threshold p,

$$\mathcal{I} = \arg\min_{\mathcal{I}} |\mathcal{I}|$$
 s.t. $\sum_{i \in \mathcal{I}} \mathbf{W}[i] \ge p$



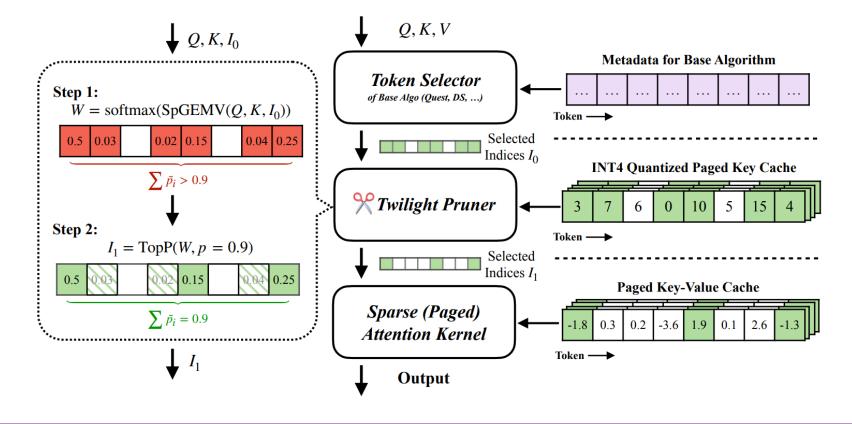
Diverse distributions observed in attention weights of different attention heads.



Cumulative attention scores of different budget selections in one example attention head.

Twilight

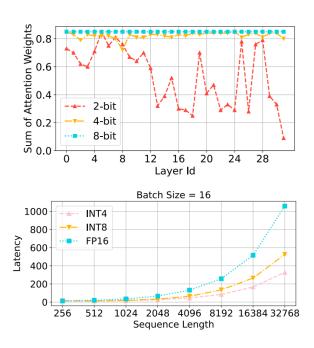
- Key Design: Hierarchical Select-then-Prune architecture as a unified optimizer for all existing top-k based sparse attention methods (denoted as BaseAlgo).
- First BaseAlgo uses a conservative, relatively large budget. Then Twilight further prunes them using efficient top-p Pruner.



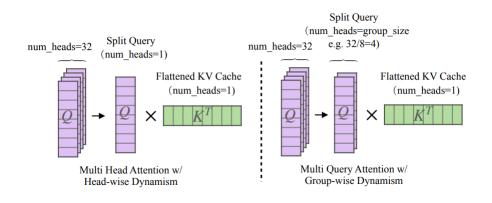
Twilight

To Achieve the Efficient Pruner

- Efficient SpGEMV with 4-bit Quantization of Key Cache to estimate token importance: we find that 4-bit strikes a balance between accuracy and efficiency.
- Efficient Sorting-free Top-p via binary search modified from FlashInfer.
- Load Balancing with Awareness of Head Dynamism with GQA adaption.



```
Algorithm 1 Top-p via Binary Search.
Input: normalized attention weights W \in \mathbb{R}^{BS \times H \times N}
top-p threshold p, hyper-parameter \epsilon.
Output: indices \mathcal{I}, mask \mathcal{M} \in \{0,1\}^{BS \times H \times N}.
l = 0, r = \max(W), m = (l + r)/2;
 repeat
   W_0 = \text{where}(W < m, 0.0, W);
   W_1 = \text{where}(W < l, INF, W);
   W_2 = \text{where}(W > r, -\text{INF}, W);
   if sum(W_0) > p then
      l=m:
   else
      r=m:
   end if
until \max(W_2) - \min(W_1) > \epsilon
 Select indices \mathcal{I} and set mask \mathcal{M} where W \geq l;
return \mathcal{I}, \mathcal{M}:
```



FlashInfer: Efficient and Customizable Attention Engine for LLM Inference Serving. Ye et al.

Accuracy Evaluation

Twilight achieves nearly no accuracy loss on three medium-context benchmarks and two long-context benchmarks (LongBench, RULER).

Table 2: Average scores on 12 different tasks from Longbench. We report relative error changes (improvement or degradation) when integrating Twilight with each base algorithm. Detailed results are in Table 5 in Appendix C.

	Budget	Longchat-7B -v1.5-32k	LLaMA-3.1-8B -Instruct
Full	32k	36.78	52.01
	Twilight	38.52 (+4.7%)	51.64 (-0.7%)
MagicPIG	K=8, L=75 K=10, L=150		51.70 51.32
Quest	256	31.26	38.20
	1024	36.85	47.79
	4096	37.33	50.79
	8192	37.10	51.44
	Twilight	38.04 (+2.5%)	51.57 (+0.3%)
DS	256	35.32	45.74
	1024	35.96	49.43
	4096	36.31	50.98
	8192	36.62	51.14
	Twilight	38.71 (+5.7%)	51.73 (+1.2%)

Table 3: Average scores on RULER.

	Budget	16k	32k	64k	96k	Avg.
Full	100% Twilight		89.42 89.10			
MagicPIG	K=8, L=75 K=10, L=150					
Quest	4% 8% Twilight	87.31	79.8 83.06 87.97	80.82	75.28	81.62
DS	4% 8% Twilight	92.89	88.11 88.70 89.24	84.39	82.72	87.18

Table 4: Results on 3 medium-context benchmarks.

G	SM8K(flexible/strict)↑ COQA(em/f1)↑ PO	G-19 Perplexity↓			
	LLaMA-2-7B-Chat					
Full	0.2290/0.2282	0.5935/0.7511	7.503			
Quest	0.0523/0.0508	0.5710/0.7425	14.15			
DS	0.2191/0.2190	0.5855/0.7401	7.622			
Twilight	0.2153/0.2115	0.6088/0.7642	7.600			
(Twilight Avg. Budget)	90.82	91.86	102.58			
	LLaMA-3.1-8B-Instruct					
Full	0.7726/0.7475	0.6363/0.7882	7.490			
Quest	0.3639/0.3533	0.6007/0.7554	19.00			
DS	0.6194/0.6027	0.6455/0.7964	7.967			
Twilight	0.7771/0.7604	0.6325/0.7869	7.529			
(Twilight Avg. Budget)	112.40	86.85	110.98			

Efficiency Evaluation

Twilight accelerates self-attention operator by $2.4\times$ (FlashInfer) and $1.4\times$ (Quest) at batch size=64

□ And for E2E per-token latency, Quest-Twi is 3.9× compared to FlashInfer and 1.35× to Quest at batch

size=256.

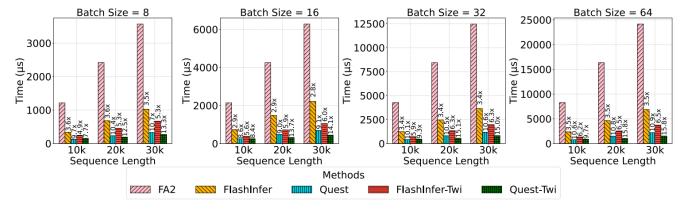


Figure 7: Latencies and speedups of self-attention at different sequence lengths and batch sizes.

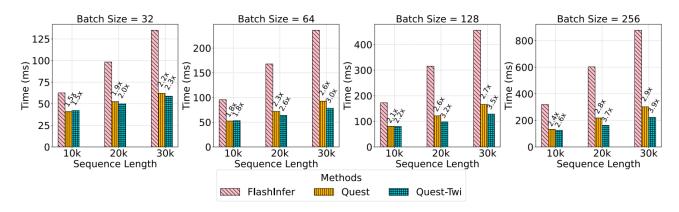


Figure 8: Time-Per-Output-Token (TPOT) improvements in end-to-end serving scenarios.

- ullet We propose Twilight, a composable optimizer to accelerate any existing top-k sparse decoding methods through **hierarchical top-**p **pruning**, making them **efficient and budget-adaptive**.
- Paper: https://arxiv.org/abs/2502.02770
- Code: https://github.com/tsinghua-ideal/Twilight

Thanks for Listening

Chaofan Lin lcf24@mails.tsinghua.edu.cn

