

PandaPose:3D Human Pose Lifting from a Single Image via **Propagating 2D Pose Prior to 3D Anchor Space**

Inter-anchor

interaction

Anchor-feature

NEURAL INFORMATION PROCESSING SYSTEMS

Jinghong Zheng¹, Changlong Jiang¹, Yang Xiao^{1, †}, Jiaqi Li¹, Haohong Kuang¹, Hang Xu¹, Ran Wang¹, Zhiguo Cao¹, Min Du², Joey Tianyi Zhou³

¹Huazhong University of Science and Technology ²ByteDance Inc. ³A*STAR, Singapore

Introduction

- Estimating 3D human pose from a single RGB image is highly challenging due to (1) 2D pose noise inevitably propagating to 3D and (2) self-occlusion causing depth ambiguity.
- > Existing image-based methods rely on in-plane 2D features or direct 2D \rightarrow 3D regression, which suffer from:
 - X Heavy reliance on accurate 2D joints
 - X Lack of explicit depth modeling
 - X Difficulty handling occluded joints
 - X One-to-one joint regression with weak robustness

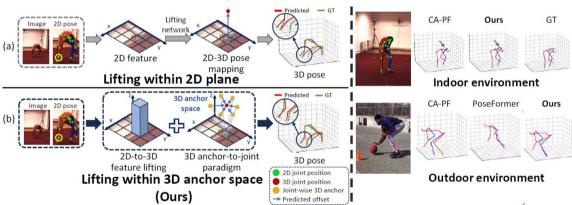


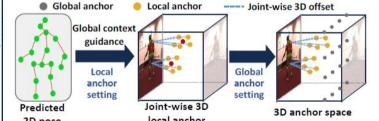
Fig1 Comparison between different 2D-to-3D human pose lifting manners

Contribution

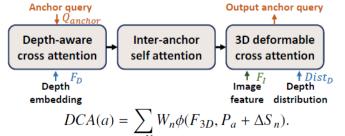
3D Anchor Space as a Unified Intermediate Representation

- ✓ Joint-wise adaptive 3D anchors provide robust 3D priors to mitigate noisy 2D inputs
- ✓ Joint-wise depth distribution fine-grained depth estimation to resolve depth ambiguity and self-occlusion
- √3D Anchor-feature interaction decoder fuse 3D anchors, depth cues and lifted 3D features
- arobust, occlusion-resistant 3D pose lifting pipeline that surpasses prior methods in both normal and challenging settings.

Paper, code are available at:


https://github.com/DeepZheng/PandaPose Feel free to contact

deepzheng@hust.edu.cn / deepzheng@foxmail.com

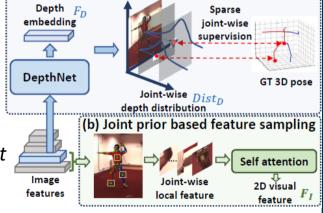

Method Overview of PandaPose 3D anchor space setting 3D anchor space 2D Pose with lifted feature ensemble prediction 2D-to-3D feature lifting Image features 2D pose estimator

3D anchor setting

1) Predicts learnable 3D local anchors per joint, conditioned on global 2D pose context 2) Combined with global fixed anchors to maintain global geometry cues

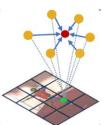
Anchor-feature interaction

Fusing adaptive 3D anchors with depthaware and image features to produce unified anchor queries that enable accurate and occlusion-robust 3D pose prediction.


2D-to-3D feature lifting

(a) Joint-wise depth estimation

2D joint position


3D joint position Anchor-to-joint offset

3D anchor position

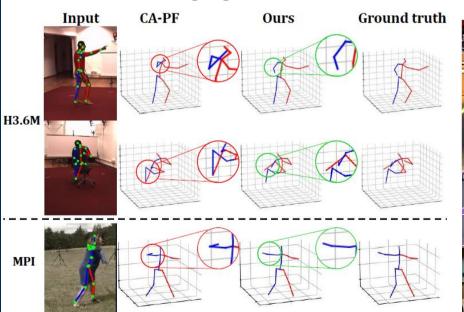
Predict depth distribution per joint instead of one global depth map and uses 3D GT joint depth as sparse supervision

Anchor-to-joint ensemble prediction

 $P_{:}^{3D} = \sum_{i} \tilde{W}_{a,j} (P_a + O_{a,j}),$

Achieves stable 3D reconstruction even with noisy 2D inputs

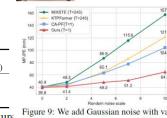
Results


Quantitative Comparison

	Method	Venue	Frame	Parameters (M) for Lifting Module	МРЈРЕ ↓	PA-MPJPE↓
Sequence based	PoseFormer [57]	ICCV'21	81	9.5	44.3	34.6
	MHFormer [20]	CVPR'22	351	24.8	43.0	34.4
	MixSTE [50]	CVPR'22	243	33.6	40.9	32.6
	P-STMO [31]	ECCV'22	243	4.6	43.0	34.4
	STCFormer [35]	CVPR'23	243	18.9	41.0	32.0
	KTPFormer [28]	CVPR'24	243	35.2	40.1	31.9
Image based	Full test set					
	GraphSH [43]	CVPR'21	1	3.7	51.9	-
	HCSF [48]	ICCV'21	1	-	47.9	39.0
	GraFormer [56]	CVPR'22	1	-	51.8	-
	Diffpose [10]	CVPR'23	1	1.9	49.7	-
	Zhou et al. [59]	AAAI'24	1	-	46.4	-
	HiPART [58]	CVPR'25	1	2.4	42.0	-
	CA-PF [55]	NeurIPS'23	1	14.1	41.4	33.5
	PandaPose (Ours)		1	15.2	39.8 (1.6 ↓)	32.7 $(0.8\downarrow)$
	Challenging subset	1				
	CA-PF [55]	NeurIPS'23	1	14.1	82.4	82.0
	PandaPose (Ours)		1	15.2	$73.1 (9.3 \downarrow)$	69.9 (12.1 ↓)

Achieves SOTA on Human3.6M, with a significant improvement (12.1mm) in challenging subset

Qualitative Comparison OOD sample


Challenging case in dataset

Ablation Studies

Global fixed anchor	Adaptive local anchor	MPJPE↓ (Full)	MPJPE ↓ (Challenging)	Anchor	I dist
PandaPos	se w/o anchor	42.1	81.9	2D	GISC
√		40.8 (1.3\(\))	76.2 (5.0↓)	3D	5
	\checkmark	40.1 (2.1\(\psi\))	74.0 (7.21)	3D	Joi
✓	✓	39.8 (2.3↓)	73.1 (8.11)		

Table 4: Anchor setting strategy comparison. lifting

from Internet