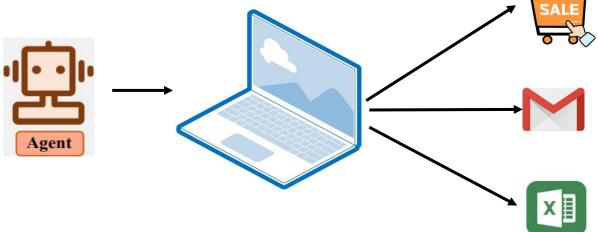


ConfTuner

Training Large Language Models to Express Their Confidence Verbally


Yibo Li, Miao Xiong, Jiaying Wu, Bryan Hooi National University of Singapore

Trustworthy Is Important for LLMs

LLMs are increasingly incorporated into our lives in a deeper way

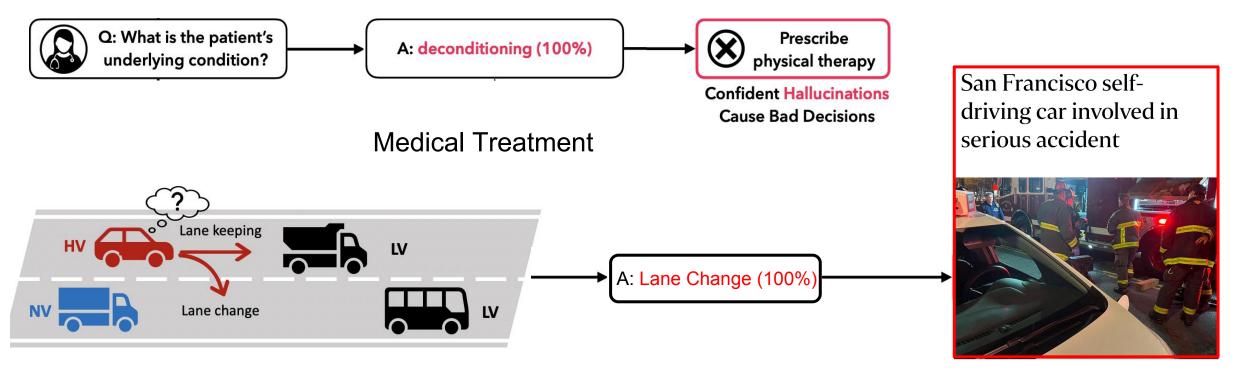
beyond chatbots

Computer-Using Agent

 It is crucial to develop general approaches for human and LLM to work together effectively

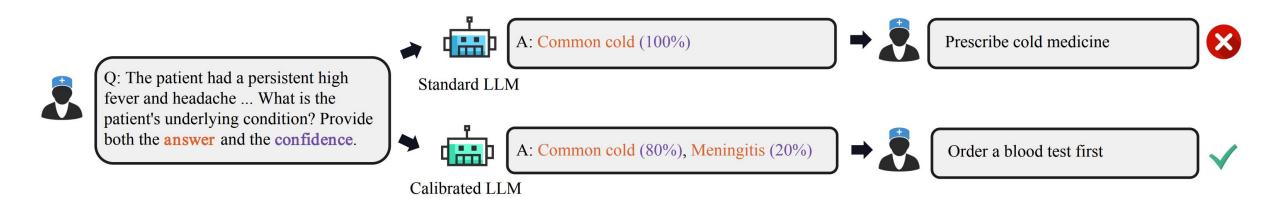
Overconfidence of LLMs

A fundamental weakness of LLMs is they are all overconfident



Overconfidence of LLM

Trustworthy LLM Emable rational decisions


 Developing models that can accurately express their confidence is important, particularly in **Human-Computer Interaction**, as it enables humans to make more rational and informed decisions.

Calibrate Verbalized Confidence of LLMs

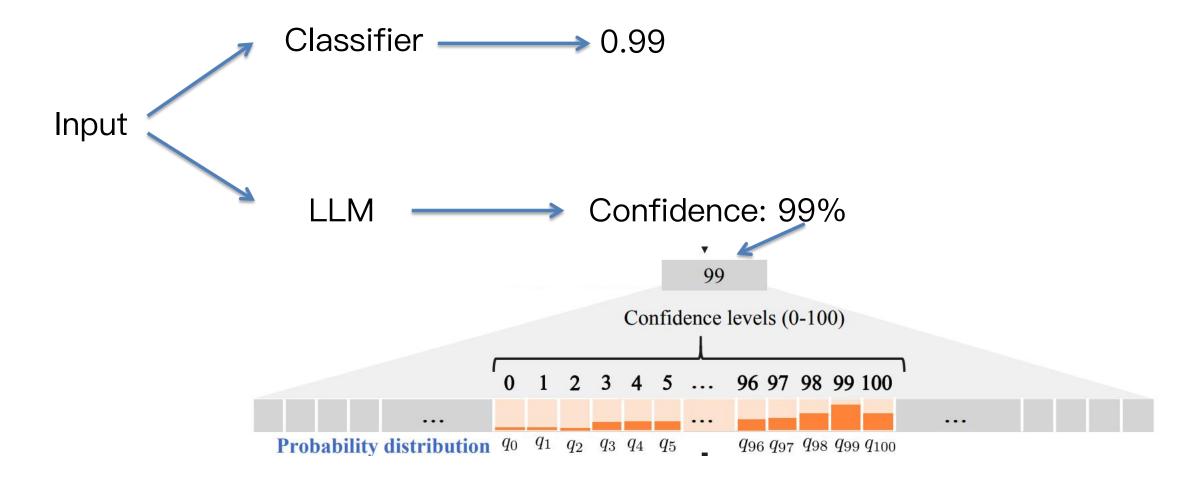
We want to calibrate LLM to expresses appropriate uncertainty.

How to Calibrate Verbalized Confidence?

Increase both computational costs and random noise

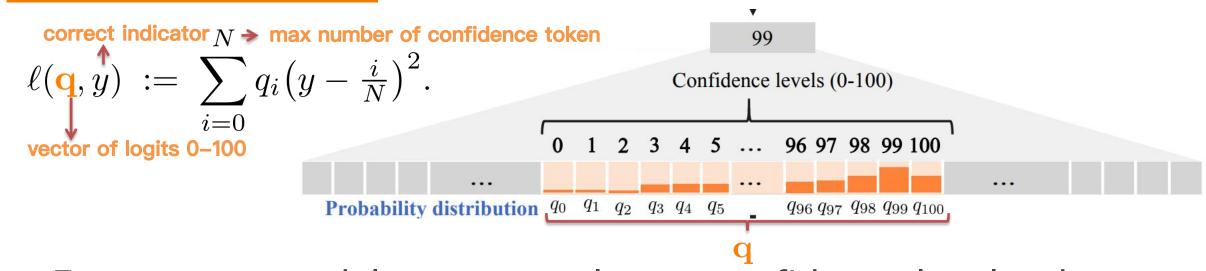
Can LLMs be naturally calibrated without ground-truth confidence?

 Classical machine learning classifiers naturally become wellcalibrated during training when optimized with loss functions that are proper scoring rules. such as Brier score.


incentivize the classifier to output probabilities that reflect the model's true likelihood of correctness

Can we use proper scoring rules to calibrate LLMs?

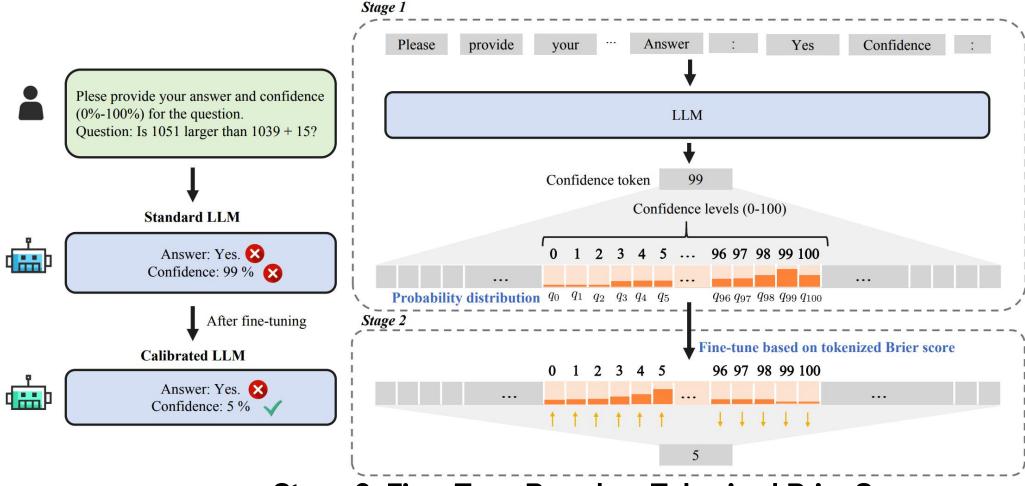
Proper Scoring Rule on LLMs



We cannot directly use proper scoring rules to LLMs.

Tokenized Brier Score

- Encourages model to express larger confidence levels when the answer is correct, and vice versa.
 - e.g. when N=100, y=1:


$$\ell(\mathbf{q},1) := q_0 \left(1 - \frac{0}{100}\right)^2 + q_1 \left(1 - \frac{1}{100}\right)^2 + \dots + q_{99} \left(1 - \frac{99}{100}\right)^2 + q_{100} \left(1 - \frac{100}{100}\right)^2$$

We theoretically prove it to be a proper scoring rule.

ConfTuner

Stage 1: Compute Probability Distribution Over Confidence Tokens

Stage 2: Fine-Tune Based on Tokenized Brier Score

Experiments

- Datasets: HotpotQA, TriviaQA, StrategyQA, GSM8K, TruthfulQA
- Base LLMs: LLaMA, Qwen, Ministral
- Evaluation Metrics: AUROC , ECE

Can ConfTuner Learn Effective Verbalized Confidence Estimation Capabilities?

Generalization to unseen datasets.

Λ	l		C	,
H	U	i U		

		In-distribution	Out-of-distribution				
LLM	Method	HotpotQA	GSM8K	TriviaQA	StrategyQA	TruthfulQA	Average
	Base	0.6884	0.5028	0.6023	0.6249	0.5433	0.5923
	Ensemble	0.6035	0.5210	0.6323	0.6022	0.6038	0.5926
LLaMA	LACIE	0.7233	0.5117	0.6818	0.6525	0.5452	0.6229
	SaySelf	0 6596	0 5425	0.6202	0 5493	0 5890	0.5921
	ConfTuner	0.7383	0.7007	0.6821	0.6750	0.5739	0.6740
	Base	0.6863	0.5114	0.6224	0.6059	0.6517	0.6155
	Ensemble	0.6259	0.5683	0.6287	0.5959	0.6460	0.6130
Qwen	LACIE	0.7141	0.5473	0.6951	0.6312	0.6397	0.6455
	SaySelf	0.6972	0.5247	0.6133	0.6265	0.6312	0.6186
	ConfTuner	0.7180	0.5841	0.7664	0.6692	0.6926	0.6861
Ministral	Base	0.5198	0.5133	0.5078	0.5129	0.5541	0.5216
	Ensemble	0.5679	0.6696	0.5004	0.6222	0.6153	0.5951
	LACIE	0.6505	0.5126	0.5128	0.6134	0.6098	0.5798
	SaySelf	0.6482	0.5133	0.5477	0.5555	0.6060	0.5740
	ConfTuner	0.7907	0.6700	0.7389	0.5147	0.6906	0.6810

ECE

		In-distribution		Out-of-distribution			
LLM	Method	HotpotQA	GSM8K	TriviaQA	StrategyQA	TruthfulQA	Average
	Base	0.4803	0.1896	0.1904	0.1469	0.3770	0.2768
	Ensemble	0.4254	0.2365	0.1652	0.1474	0.4035	0.2756
LLaMA	LACIE	0.2954	0.1613	0.1396	0.1577	0.4394	0.2387
_	SaySelf	0.3358	0.2217	0.2185	0.1453	0.3245	0.2492
	ConfTuner	0.0405	0.1276	0.0388	0.1387	0.1955	0.1082
	Base	0.6312	0.1306	0.4302	0.2199	0.4786	0.3781
	Ensemble	0.5909	0.2428	0.3595	0.1226	0.4626	0.3597
Qwen	LACIE	0.5519	0.1240	0.4060	0.1775	0.4422	0.3403
	SaySelf	0.5401	0.1244	0.4024	0.1883	0.4509	0.3412
	ConfTuner	0.4212	0.1302	0.3549	0.1815	0.3484	0.2872
Ministral	Base	0.6767	0.2926	0.3715	0.2813	0.5746	0.4393
	Ensemble	0.5887	0.3357	0.3966	0.1948	0.5670	0.4166
	LACIE	0.5627	0.2745	0.2503	0.3321	0.4221	0.3683
	SaySelf	0.5536	0.2893	0.3668	0.2784	0.5438	0.4064
	ConfTuner	0.1027	0.2128	0.1736	0.1815	0.2715	0.1884

Can ConfTuner Learn Effective Verbalized Confidence Estimation Capabilities?

Generalization to different format of confidence scores.

Specifically, we test
 ConfTuner's performance
 on high/medium/low
 confidence levels.

AUROC

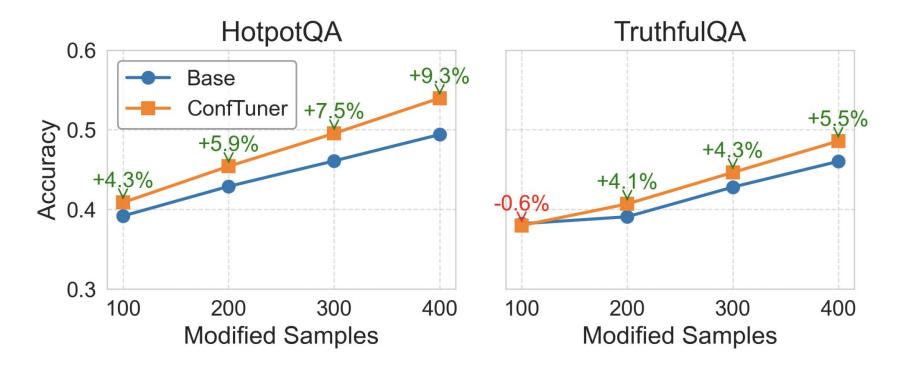
		In-distribution	Out-of-distribution				
LLM	Method	HotpotQA	GSM8K	TriviaQA	StrategyQA	TruthfulQA	Average
	Base	0.5859	0.5541	0.5564	0.6280	0.5345	0.5718
LLaMA	LACIE	0.6013	0.3940	0.5337	0.5105	0.5236	0.5126
LLaWA	SaySelf	0.6497	0.5841	0.5775	0.6379	0.5453	0.5989
	ConfTuner	0.7203	0.6524	0.6820	0.6494	0.5515	0.6511
	Base	0.5664	0.5257	0.5204	0.5959	0.5517	0.5520
Owen	LACIE	0.5052	0.4758	0.5442	0.6059	0.5167	0.5296
Qwen	SaySelf	0.5814	0.5342	0.5423	0.6148	0.5618	0.5669
	ConfTuner	0.7116	0.6050	0.5957	0.6385	0.5926	0.6287
Ministral	Base	0.5167	0.5181	0.5055	0.5346	0.5177	0.5185
	LACIE	0.5239	0.5535	0.5136	0.5190	0.5620	0.5344
	SaySelf	0.5449	0.5536	0.5427	0.5370	0.5478	0.5452
	ConfTuner	0.7520	0.7018	0.7517	0.5000	0.6123	0.6636

Can ConfTuner Learn Effective Verbalized Confidence Estimation Capabilities?

- Generalization to implicit confidence expressions.
 - e.g. I'm fairly certain, but there's a chance I could be mistaken

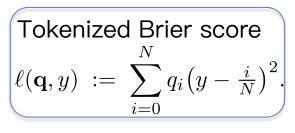
		In-distribution		Out-of-distribution			
Metric	Method	HotpotQA	GSM8K	TriviaQA	StrategyQA	TruthfulQA	Average
ECE ↓	Base (i) ConfTuner (e) ConfTuner (i)	0.2808 0.0405 0.1639	0.1179 0.1276 0.0950	0.1232 0.0388 0.1088	0.1098 0.1387 0.1721	0.3250 0.1955 0.2019	0.1913 0.1082 0.1483
AUROC ↑	Base (i) ConfTuner (e) ConfTuner (i)	0.7047 0.7383 0.7239	0.5422 0.7007 0.6869	0.6342 0.6821 0.7024	0.6489 0.6750 0.6751	0.5895 0.5739 0.6217	0.6239 0.6740 0.6820

Can ConfTuner Help Build More Reliable and Cost-Effective LLM Systems?

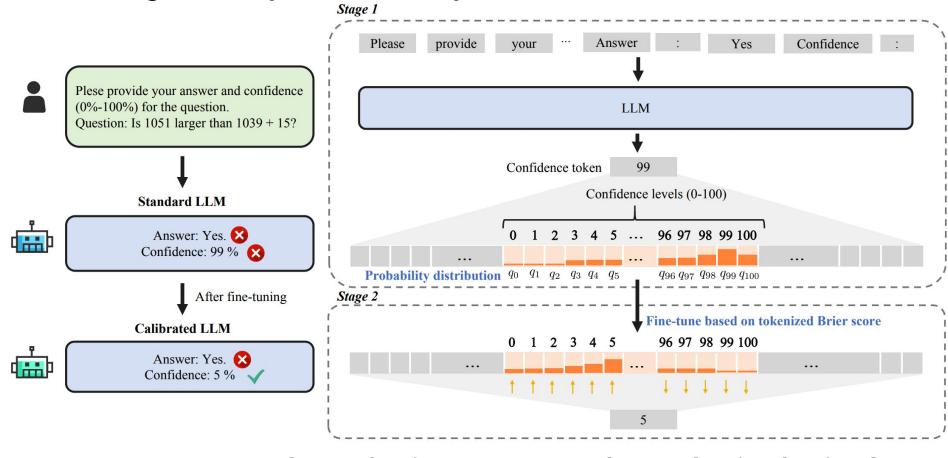

- ConfTuner improves the self-correction ability of LLM
 - We first instruct LLM to generate answers and confidences, then retain initial responses with high confident answers, and instruct LLM to refine low-confident answers

Can ConfTuner Help Build More Reliable and Cost-Effective LLM Systems?

- ConfTuner achieves higher performance gain at same cost in confidence-based model cascade systems
 - When base models are uncertain, use a strong model to generate the answer.


Running Time and Training Dataset Size

Method	Time		Training Data			
	Training	Inference	Data size	Sample times	Total number	
LACIE	26 min	1 min	10,000	10	100,000	
SaySelf	120 min	1 min	90,000	100	9,000,000	
Ensemble	_	10 min	-	_	_	
ConfTuner	4 min	1 min	2,000	1	2,000	


ConfTuner: Training Large Language Models to Express Their Confidence Verbally

Yibo Li, Miao Xiong, Jiaying Wu, Bryan Hooi

Stage 1: Compute Probability Distribution Over Confidence Tokens

Stage 2: Fine-Tune Based on Tokenized Brier Score