Tighter CMI-based Generalization Bounds via Stochastic Projection and Quantization

Milad Sefidgaran ¹

Kimia Nadjahi²

Abdellatif Zaidi ^{1,3}

 1 Paris Research Center, Huawei Technologies France 2 CNRS, ENS Paris, France 3 Université Gustave Eiffel, France

Outline

Problem setup and motivation

Lossy algorithm compression

Projected-quantized CMI bound

Resolving recently raised limitations of classic CMI bounds

Memorization

Implications and Conclusion

Notations and basic definitions

- Data $Z \in \mathcal{Z}$ distributed according to an unknown distribution μ
- Training dataset $S_n = \{Z_1, \ldots, Z_n\} \sim P_{S_n} = \mu^{\otimes n}$
- Randomized algorithm $A: \mathbb{Z}^n \to \mathcal{W}$:
 - takes S_n as input and chooses a hypothesis $\mathcal{A}(S_n) = W \in \mathcal{W}$
 - induces a conditional distribution $P_{W|S_n}$
- Loss function $\ell \colon \mathcal{Z} \times \mathcal{W} \to \mathbb{R}$
- Population risk: $\mathcal{R}(w) \triangleq \mathbb{E}_{Z \sim \mu}[\ell(Z, w)]$ and Empirical risk: $\widehat{\mathcal{R}}(s_n, w) \triangleq \frac{1}{n} \sum_{i=1}^n \ell(z_i, w)$

Generalization error $gen(s_n, w) \triangleq \mathcal{R}(w) - \widehat{\mathcal{R}}(s_n, w)$

Some information-theoretic generalization bounds

• [M98] Fix some prior Q_W and assume $\ell(z, w) \in [0, 1]$. Then, with probability $1 - \delta$ over $S_n \sim \mu^{\otimes n}$,

$$\mathbb{E}_{W \sim P_{W|S_n}} \left[\operatorname{gen}(S_n, W) \right] \le \sqrt{\frac{D_{KL} \left(P_{W|S_n} \| Q_W \right) + \log \left(\frac{2\sqrt{n}}{\delta} \right)}{2n}}$$

• [XR17] Assume $\ell(z, w) \in [0, 1]$. Then,

$$\mathbb{E}_{S_n, W \sim P_{S_n, W}} \left[\operatorname{gen}(S_n, W) \right] \triangleq \operatorname{gen}(\mu, \mathcal{A}) \leq \sqrt{\frac{\mathsf{I}(S_n; W)}{2n}}$$

[M98] McAllester. "Some PAC-Bayesian theorems," COLT 1998.

[XR17] Xu & Raginsky. "Information-theoretic analysis of generalization capability of learning algorithms" NeurIPS 2017.

Conditional mutual information (CMI) framework

- $\tilde{\mathbf{S}} \in \mathcal{Z}^{n \times 2}$: a super-sample composed of 2n data-points $\mathbf{Z}_{i,j} \overset{\text{i.i.d.}}{\sim} \mu$, where $j \in \{0,1\}$ and $i \in [n]$.
- $\mathbf{J} = (J_1, \dots, J_n) \in \{0, 1\}^n$: membership vector, where $J_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(1/2)$
 - $\tilde{\mathbf{S}}_{\mathbf{J}} = \{Z_{1,J_1}, Z_{2,J_2}, \dots, Z_{n,J_n}\}$: plays the role of the training dataset $\mathbf{S}_{\mathbf{n}}$,
 - $\tilde{\mathbf{S}}_{\mathbf{J^c}} = \tilde{\mathbf{S}} \setminus \tilde{\mathbf{S}}_{\mathbf{J}}$: plays the role of a test dataset $\mathbf{S}_{\mathbf{n}}'$
 - $\tilde{\mathbf{S}}$: a shuffled version of the union of the two.
- [SZ20] CMI of an algorithm $\mathcal{A}: \mathcal{Z}^n \to \mathcal{W}$ with respect to μ :

$$\mathsf{CMI}(\mu,\mathcal{A}) \triangleq \mathsf{I}(\mathcal{A}(\tilde{\mathbf{S}}_{\mathbf{J}});\mathbf{J}|\tilde{\mathbf{S}})$$

• [SZ20] Assume $\ell(z, w) \in [0, 1]$. Then,

$$gen(\mu, \mathcal{A}) \le \sqrt{\frac{2 \operatorname{CMI}(\mu, \mathcal{A})}{n}}$$

[SZ20] Steinke & Zakynthinou. "Reasoning about generalization via conditional mutual information," COLT 2020.

Motivation: raised information-theoretic limitations

- Several papers have studied the limitations of information-theoretic generalization bounds.
- In particular, [HRTSRD23] [L23] [ADHLR24] have provided counterexamples where:
- many information-theoretic (IT) generalization bounds become vacuous.
- any "good" learning algorithm 'must' memorize the training data for a data distribution!
- Two main questions in our work:
 - 1. Do presented counterexamples reveal intrinsic limitations of IT approaches?
 - **2.** Is memorization inevitable for effective learning?

[HRTSRD23] Haghifam et al. "Limitations of information-theoretic generalization bounds for gradient descent methods in stochastic convex optimization," ALT 2023.

[L23] Livni. Information theoretic lower bounds for information theoretic upper bounds," NeurIPS 2023.

[ADHLR24] Attias et al. "Information complexity of stochastic convex optimization: Applications to generalization, memorization, and tracing," ICML 2024.

Outline

Lossy algorithm compression

A closer look into information-theoretic bounds

- Assume $\ell(z, w) \in [0, 1]$ and $|\mathcal{W}| < \infty$. Then, $gen(\mu, \mathcal{A}) \leq \sqrt{\frac{\log(|\mathcal{W}|)}{2n}}$, by maximal inequality.
- [SGRS22] [SZ24] Aforementioned information-theoretic bounds can be obtained by first applying 'lossless block-coding compression' and then invoking the above bound.

[SGRS22] Sefidgaran et al. "Rate-Distortion Theoretic Generalization Bounds for Stochastic Learning Algorithms," COLT 2022.

[SZ24] Sefidgaran & Zaidi. "Data-dependent generalization bounds via variable-size compressibility," IEEE Transactions on Information Theory 2024.

A closer look into information-theoretic bounds

- Assume $\ell(z, w) \in [0, 1]$ and $|\mathcal{W}| < \infty$. Then, $gen(\mu, \mathcal{A}) \leq \sqrt{\frac{\log(|\mathcal{W}|)}{2n}}$, by maximal inequality.
- [SGRS22] [SZ24] Aforementioned information-theoretic bounds can be obtained by first applying 'lossless block-coding compression' and then invoking the above bound.
- Consider m independent training datasets $S^m = (S_n(1), \ldots, S_n(m)) \in \mathbb{Z}^{nm}$ and the corresponding picked hypotheses $W^m = (W(1), \ldots, W(m)) \in \mathcal{W}^m$, where $W(j) = \mathcal{A}(S_n(j))$.
- By covering lemma, \exists hypothesis book $\mathcal{H}_m \subseteq \mathcal{W}^m$, $\forall \hat{\mathbf{w}} \in \mathcal{H}_m : \hat{\mathbf{w}} = (\hat{w}(1), \dots, \hat{w}(m)) \in \mathcal{W}^m$, s.t.
 - With probability $P_m \xrightarrow{m \to \infty} 1$, for (S^m, W^m) , $\exists \hat{\mathbf{w}}^* \in \mathcal{H}_m$ such that $\hat{p}_{(S^m, W^m)} = \hat{p}_{(S^m, \hat{\mathbf{w}}^*)}$,
 - $|\mathcal{H}_m| \lesssim e^{m \mathsf{I}(S_n;W)}$.

[SGRS22] Sefidgaran et al. "Rate-Distortion Theoretic Generalization Bounds for Stochastic Learning Algorithms," COLT 2022.

[SZ24] Sefidgaran & Zaidi. "Data-dependent generalization bounds via variable-size compressibility," IEEE Transactions on Information Theory 2024.

A closer look into information-theoretic bounds

• By letting $m \to \infty$,

$$\operatorname{gen}(\mu, \mathcal{A}) = \frac{1}{m} \mathbb{E}_{S^m, W^m} \Big[\sum_{j \in [m]} \operatorname{gen}(S_n(j), W(j)) \Big]$$

$$\to \frac{1}{m} \mathbb{E}_{S^m, \hat{\mathbf{W}}^*} \Big[\sum_{j \in [m]} \operatorname{gen}(S_n(j), \hat{\mathbf{W}}^*(j)) \Big] \quad \left(\operatorname{since} \hat{p}_{(S^m, W^m)} = \hat{p}_{(S^m, \hat{\mathbf{w}}^*)} \right)$$

$$\leq \sqrt{\frac{\log \left(e^{\mathbf{m} \mathsf{I}(S_n; W)}}{2n m}} = \sqrt{\frac{\mathsf{I}(S_n; W)}{2n}}.$$

- \Rightarrow $I(S_n; W)$ is an **upper bound** on **lossless compressibility** level of A. [SGRS22]
- \Rightarrow CMI(μ , A) is an **upper bound** on **lossless compressibility** level of A, given \tilde{S} . [SGRS22]
- $\Rightarrow D_{KL}(P_{W|S_n}||Q_W)$ is an upper bound on lossless variable-size compressibility level of \mathcal{A} , given S_n . [SZ24]

[SGRS22] Sefidgaran et al. "Rate-Distortion Theoretic Generalization Bounds for Stochastic Learning Algorithms," COLT 2022.

[SZ24] Sefidgaran & Zaidi. "Data-dependent generalization bounds via variable-size compressibility," IEEE Transactions on Information Theory 2024.

How to understand raised limitations?

- By source-coding and coordination results, lossless compression (coverings) of
 - continuous sources or mappings requires infinite rate!
 - high-dimensional sources or mappings often provides negligible reduction!
- Naturally, for effective compression, one needs to consider lossy compression:
- \Rightarrow to find $\hat{\mathbf{w}}^* \in \mathcal{H}_m$ such that $\sum_{j \in [m]} \operatorname{gen}(S_n(j), W(j)) \approx \sum_{j \in [m]} \operatorname{gen}(S_n(j), \hat{\mathbf{w}}^*(j))$.
- In this work, we follow [NDR20] [SGRS22] to use the Rate-Distortion theoretic approach by finding a suitable "surrogate" or "compressed" algorithm.
 - Studies found that high-dimensional trained models often reside in a low-dimensional subspace.
 - Inspired by this, and following [GKL20] [SCZ22] [KGBS24], we build the lossy algorithm by stochastic projection and quantization.

[NDR20] Negrea et al. "In defense of uniform convergence: Generalization via derandomization with an application to interpolating predictors," ICML 2020.

[GKL20] Grønlund et al. "Near-tight margin-based generalization bounds for support vector machines," ICML 2024. [SGRS22] Sefidgaran et al. "Rate-Distortion Theoretic Generalization Bounds for Stochastic Learning Algorithms," COLT 2022.

[SCZ22] Sefidgaran et al. "Rate-distortion theoretic bounds on generalization error for distributed learning" NeurIPS 2022. [KGBS24] Nadiahi et al. "Slicing mutual information generalization bounds for neural networks," ICML 2024.

Main contributions

• We introduce **stochastic projection** and **lossy quantization** within the CMI framework and use them to establish a new **lossy–CMI–based** generalization bound.

• We show that the new bound attains the **optimal order-wise rate** for counterexamples where the **CMI bound fails**.

• For counterexamples in which any "good" learning algorithm must memorize under a given data distribution, we show that there exists a 'close' projected—quantized model that does not memorize under any data distribution.

Outline

Problem setup and motivation

Lossy algorithm compression

Projected-quantized CMI bound

Resolving recently raised limitations of classic CMI bounds

Memorization

Implications and Conclusion

Stochastic projection and lossy quantization

• Our new bounds involve two main ingredients, stochastic projection and lossy quantization.

• Stochastic projection:

- Let $\Theta \in \mathbb{R}^{D \times d'}$ be a random matrix, distributed $\sim P_{\Theta}$ independently of $\tilde{\mathbf{S}}$.
- Consider the hypothesis $W \in \mathcal{W} \subset \mathbb{R}^D$ which lies in a D-dimensional space.
- Instead of W, we consider its projection $\Theta^{\top}W \in \mathbb{R}^{d'}$ onto a smaller d'-dimensional space.
- $d' \ll D$

• Lossy quantization:

- The lossy quantization algorithm is a stochastic map $\tilde{\mathcal{A}} : \mathbb{R}^{d'} \to \hat{\mathcal{W}}$ that maps $\Theta^{\top}W$ to a "quantized" hypothesis $\hat{W} \in \hat{\mathcal{W}} \subset \mathbb{R}^{d'}$.
- The stochastic map $\tilde{\mathcal{A}}$ induces $P_{\hat{W}|\Theta^{\top}W}$.

Stochastic projection and lossy quantization

• Overall ϵ -lossy compression: Let $\epsilon \in \mathbb{R}$. The overall ϵ -lossy compression algorithm $\hat{\mathcal{A}} \colon \mathcal{Z}^n \times \mathbb{R}^{D \times d'} \to \hat{\mathcal{W}}$, is composed of **projection** and **lossy quantizaion**:

$$\hat{\mathcal{A}}(S_n, \Theta) \triangleq \tilde{\mathcal{A}}(\Theta^{\top} \mathcal{A}(S_n)) = \hat{W} \in \mathbb{R}^{d'},$$

and satisfies

Distortion
$$\triangleq \mathbb{E}_{P_{S_n,W}P_{\Theta}P_{\hat{W}|\Theta^{\top}W}}\left[\operatorname{gen}(S_n,W) - \operatorname{gen}(S_n,\Theta\hat{W})\right] \leq \epsilon.$$

• Disintegrated CMI: For a super-sample $\tilde{\mathbf{S}}$ and a stochastic projection matrix Θ :

$$\mathsf{CMI}^{\Theta}(\tilde{\mathbf{S}},\hat{\mathcal{A}}) \triangleq \mathsf{I}^{\tilde{\mathbf{S}},\Theta}(\hat{\mathcal{A}}(\tilde{\mathbf{S}}_{\mathbf{J}},\Theta);\mathbf{J})$$

where $I^{\tilde{\mathbf{S}},\Theta}(\hat{\mathcal{A}}(\tilde{\mathbf{S}}_{\mathbf{J}},\Theta);\mathbf{J})$ is the CMI given an instance of $\tilde{\mathbf{S}}$ and Θ , computed $\sim P_{\mathbf{J}} \otimes P_{W|\tilde{\mathbf{S}}_{\mathbf{J}}} \otimes P_{\hat{W}|\Theta^{\top}W}$, with $P_{\mathbf{J}} = \operatorname{Bern}(1/2)^{\otimes n}$.

Projected-quantized CMI bound

For every $\epsilon \in \mathbb{R}$, every $d' \in \mathbb{N}$, and every projected model quantization set $\hat{\mathcal{W}} \subseteq \mathbb{R}^{d'}$,

$$\operatorname{gen}(\mu,\mathcal{A}) \leq \inf_{P_{\tilde{W}}|\Theta^{\top}W} \inf_{P_{\Theta}} \mathbb{E}_{P_{\tilde{\mathbf{S}}}P_{\Theta}} \left[\sqrt{\frac{2\Delta\ell_{\hat{w}}(\tilde{\mathbf{S}},\Theta)}{n}} \mathsf{CMI}^{\Theta}(\tilde{\mathbf{S}},\hat{\mathcal{A}}) \right] + \epsilon,$$

where $\hat{W} \in \hat{\mathcal{W}}$, $\Theta \in \mathbb{R}^{D \times d'}$, the infima are over all $P_{\hat{W}|\Theta^{\top}W}$ and P_{Θ} such that:

Distortion :=
$$\mathbb{E}_{P_{S_n,W}P_{\Theta}P_{\hat{W}|\Theta^{\top}W}}\left[\operatorname{gen}(S_n,W) - \operatorname{gen}(S_n,\Theta\hat{W})\right] \leq \epsilon$$
,

and

$$\Delta \ell_{\hat{w}}(\tilde{\mathbf{S}}, \Theta) \coloneqq \mathbb{E}_{P_{W|\tilde{\mathbf{S}}}P_{\hat{W}|\Theta^{\top}W}} \left[\frac{1}{n} \sum_{i \in [n]} (\ell(Z_{i,0}, \Theta\hat{W}) - \ell(Z_{i,1}, \Theta\hat{W}))^{2} \right].$$

Outline

Problem setup and motivation

Lossy algorithm compression

Projected-quantized CMI bound

Resolving recently raised limitations of classic CMI bounds

Memorization

Implications and Conclusion

Definitions

- Stochastic Convex Optimization (SCO) problem: a triple $(\mathcal{W}, \mathcal{Z}, \ell)$, where $\mathcal{W} \in \mathbb{R}^D$ is a convex set and $\ell(z,\cdot) \colon \mathcal{W} \to \mathbb{R}$ is a convex function for every $z \in \mathcal{Z}$.
- Convex-Lipschitz-Bounded (CLB) problem: a SCO problem, where $\forall w \in \mathcal{W}, \|w\| \leq R$ and the loss function is L-Lipschitz. This class of problems is denoted by $C_{L,R}$
- CMI generalization bound [HRTSRD23] for $\mathcal{C}_{L,R}$:

$$\operatorname{gen}(\mu, \mathcal{A}) \leq LR\sqrt{\frac{8}{n}\mathsf{CMI}(\mu, \mathcal{A})}$$

[L23] Livni, Information theoretic lower bounds for information theoretic upper bounds," NeurIPS 2023, [HRTSRD23] Haghifam et al. "Limitations of information-theoretic generalization bounds for gradient descent methods in stochastic convex optimization." ALT 2023.

Definitions

- Stochastic Convex Optimization (SCO) problem: a triple (W, \mathcal{Z}, ℓ) , where $W \in \mathbb{R}^D$ is a convex set and $\ell(z, \cdot) \colon W \to \mathbb{R}$ is a convex function for every $z \in \mathcal{Z}$.
- Convex-Lipschitz-Bounded (CLB) problem: a SCO problem, where $\forall w \in \mathcal{W}, \|w\| \leq R$ and the loss function is L-Lipschitz. This class of problems is denoted by $\mathcal{C}_{L,R}$
- CMI generalization bound [HRTSRD23] for $C_{L,R}$:

$$\operatorname{gen}(\mu, \mathcal{A}) \leq LR\sqrt{\frac{8}{n}\mathsf{CMI}(\mu, \mathcal{A})}$$

• Problem instance $\mathcal{P}_{cvx}^{(D)} \in \mathcal{C}_{1,1}$ [L23] [ADHLR24]: Let $\mathcal{Z}, \mathcal{W} \subseteq \mathcal{B}_D(1)$ and

$$\ell_c(z,w) = -\langle w, z \rangle$$

[L23] Livni. Information theoretic lower bounds for information theoretic upper bounds," NeurIPS 2023. [HRTSRD23] Haghifam et al. "Limitations of information-theoretic generalization bounds for gradient descent methods in stochastic convex optimization," ALT 2023.

CMI bound for $\mathcal{P}_{cvx}^{(D)}$ [ADHLR24]

Consider any ε -learner algorithm¹ $\mathcal{A} = \{\mathcal{A}_n\}_{n \in \mathbb{N}}$ for $\mathcal{P}_{cvx}^{(D)}$ with sample complexity $N(\cdot, \cdot)$.

i. For $n \geq N(\varepsilon, \delta)$ and $\mathbf{D} = \mathbf{\Omega}(\mathbf{n}^4 \log(\mathbf{n}))$, there exists \mathcal{Z} and a data distribution μ^* s.t.

$$\mathsf{CMI}(\mu^*, \mathcal{A}_n) = \Omega\Big(\frac{1}{\varepsilon^2}\Big).$$

ii. For optimal sample complexity $N(\varepsilon, \delta) = \Theta(\frac{1}{\varepsilon^2})$, the CMI generalization bound equals

CMI bound =
$$LR\sqrt{8\mathsf{CMI}(\mu^*, \mathcal{A}_n)/N(\varepsilon, \delta)} = \Theta(1)$$
.

 1 ϵ -learner for SCO: $\mathcal{A} = \{\mathcal{A}_n\}_{n>1}$ is called an ϵ -learner algorithm with sample complexity $N: \mathbb{R} \times \mathbb{R} \to \mathbb{N}$, if for every $\delta \in (0,1]$ and $n > N(\varepsilon, \delta)$, for every μ , with probab. $1 - \delta$ over S_n , $\mathcal{R}(\mathcal{A}_n(S_n)) - \min_{w \in \mathcal{W}} \mathcal{R}(w) \leq \varepsilon$.

[ADHLR24] Attias et al. "Information complexity of stochastic convex optimization: Applications to generalization, memorization, and tracing," ICML 2024.

Projected-Quantized CMI bound for $\mathcal{P}_{cvx}^{(D)}$

For every $\mathcal{A} \colon \mathcal{Z}^n \to \mathcal{W}$ of the instance $\mathcal{P}_{cvx}^{(D)}$,

$$gen(\mu, A) \leq Projected-Quantized CMI bound = \frac{8}{\sqrt{n}}.$$

In particular, setting $N(\varepsilon, \delta) = \Theta(\frac{1}{\varepsilon^2})$ for ε -learner algorithms we get

$$gen(\mu, A) = \mathcal{O}(\varepsilon).$$

- Impossibility result of [ADHLR24] is obtained for an ε -learner and a specific choice of $\mathcal Z$ and μ^* .
- The above result holds for any learning algorithm, any $\mathcal{Z} \subseteq \mathcal{B}_D(1)$, and any μ .

Construction of projected-quantized model via Johnson-Lindenstrauss transform

- Fix some constants $c_w \in \left[1, \sqrt{\frac{5}{4}}\right), \nu \in (0, 1], \text{ and } d' \in \mathbb{N}^*.$
- Let $\Theta \in \mathbb{R}^{D \times d'}$, with elements $\stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \frac{1}{d'})$.
- Given Θ and $W = \mathcal{A}(S_n)$, in the scheme $\mathbf{JL}(d', c_w, \nu)$, let

$$U := \begin{cases} \Theta^{\top} W, & \text{if } \|\Theta^{\top} W\| \le c_w, \\ \mathbf{0}_{d'}, & \text{otherwise.} \end{cases}$$

• Let $\hat{W} \in \hat{\mathcal{W}} = \mathcal{B}_{d'}(c_w + \nu)$ be defined as

$$\hat{W} = U + V_{\nu} \stackrel{\text{i.i.d.}}{\sim} \text{Uniform} \Big(\mathcal{B}_{d'} \big(U, \nu \big) \Big),$$

with V_{ν} : independent random variable smapled uniformly on $\mathcal{B}_{d'}(\nu)$

• This defines P_{Θ} and $P_{\hat{W}|\Theta^{\top}W}$ for a $JL(d', c_w, \nu)$ scheme.

Properties of $JL(d', c_w, \nu)$

• Disintegrated CMI:

$$\mathsf{CMI}^\Theta(\tilde{\mathbf{S}},\hat{\mathcal{A}}) \leq d' \log \Bigl(\frac{c_w + \nu}{\nu}\Bigr)$$

• Loss difference:

$$\mathbb{E}_{P_{\mathbf{S}}P_{\Theta}}[\Delta \ell_{\hat{w}}(\tilde{\mathbf{S}}, \Theta)] \le 4(c_w + \nu)^2$$

• Distortion:

Distortion
$$\leq \frac{3}{(\sqrt{n} \text{ or } 1)} e^{-\frac{0.21}{4}d'(c_w^2 - 1)^2}$$

• Projected-quantized CMI bound:

$$\operatorname{gen}(\mu, \mathcal{A}) \leq \mathbb{E}_{P_{\tilde{\mathbf{S}}}P_{\Theta}} \left| \sqrt{\frac{2\Delta \ell_{\hat{w}}(\tilde{\mathbf{S}}, \Theta)}{n}} \mathsf{CMI}^{\Theta}(\tilde{\mathbf{S}}, \hat{\mathcal{A}}) \right| + \operatorname{Distortion}$$

• In our proofs, $d' \in \{1, \mathcal{O}(n^r), \mathcal{O}(\log(n))\}$ for some $r \in \mathbb{R}_+$

Properties of $JL(d', c_w, \nu)$

- Hence, for the counterexample of [ADHLR24],
 - CMI of the original model blows up as ε increases: CMI = $\Omega(1/\varepsilon^2) = \Omega(N(\epsilon, \delta))$
 - (Disintegrated) CMI of the projected quantized model is negligible: $\mathcal{O}(d')$,
 - Generalization-wise; two models are very close: having difference of $\mathcal{O}\left(\frac{e^{-\alpha d'}}{\sqrt{n}}\right)$.
- Similar results hold for
 - counterexample of [ADHLR24] for Convex set-Strongly Convex-Lipschitz (CSL) subclass,
 - counterexample of [L23],
 - generalized linear stochastic optimization problems.

[L23] Livni, Information theoretic lower bounds for information theoretic upper bounds," NeurIPS 2023, [ADHLR24] Attias et al. "Information complexity of stochastic convex optimization: Applications to generalization. memorization, and tracing," ICML 2024.

Outline

Problem setup and motivation

Lossy algorithm compression

Projected-quantized CMI bound

Resolving recently raised limitations of classic CMI bounds

Memorization

Implications and Conclusion

Memorization and recall game

- Recall Game [ADHLR24]: Given $\mathcal{A} = \{\mathcal{A}_n\}_{n\geq 1}$, let $\mathcal{Q}: \mathbb{R}^D \times \mathcal{M}_1(\mathcal{Z}) \times \mathcal{Z} \to \{0,1\}$ be an adversary for the following game for an $i \in [n]$.
 - Given a test data point $Z'_i \sim \mu$ independent of (Z_i, W) , let $Z_{i,0} = Z'_i$ and $Z_{i,1} = Z_i$.
 - Adversary observes Z_{i,K_i} , where $K_i \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(1/2)$.
 - Adversary outputs $\hat{K}_i \triangleq \mathcal{Q}(W, Z_{i,K_i}, \mu)$ as its guess of K_i .

- Consider recall game for n rounds:
 - At each round $i \in [n]$, a pair $(Z_{i,0}, Z_{i,1})$ is considered.
 - The adversary makes two independent guesses: one for $Z_{i,0}$, the other for $Z_{i,1}$.

[ADHLR24] Attias et al. "Information complexity of stochastic convex optimization: Applications to generalization, memorization, and tracing," ICML 2024.

Memorization and tracing

- Soundness and recall [ADHLR24]: Adversary plays the game in n rounds, twice per round independently of each other, using respectively $(W, Z_{i,0}, \mu)$ and $(W, Z_{i,1}, \mu)$ as input
 - [Test data] Given $\xi \in [0,1]$, the adversary is said to be ξ -sound if

$$\mathbb{P}\Big(\exists i \in [n] \colon \mathcal{Q}(W, Z_{i,0}, \mu) = 1\Big) \le \xi$$

• [Training data] Adversary certifies the recall of m samples with probability $q \in [0,1]$ if

$$\mathbb{P}\bigg(\sum\nolimits_{i\in[n]}\mathcal{Q}(W,\mathbf{Z}_{i,1},\mu)\geq m\bigg)\geq q$$

- If both conditions are met, the adversary (m, q, ξ) -traces the data.
- Good adversary $\Rightarrow \xi$ small, m large, and q non-negligible.
 - A "dummy adversary" can (m, q, ξ) -trace the data if m = o(n) or if $\xi > q$.

[ADHLR24] Attias et al. "Information complexity of stochastic convex optimization: Applications to generalization, memorization, and tracing," ICML 2024.

Memorization for ε-learners of $\mathcal{P}_{cvx}^{(D)}$ [ADHLR24]

Fix arbitrary $\xi \in (0,1]$ and let $\mathcal{Z} = \{\pm 1/\sqrt{D}\}^D$.

Given any ε -learner algorithm \mathcal{A} with sample complexity $N(\varepsilon, \delta) = \Theta(\log(1/\delta)/\varepsilon^2)$, there exist

- \rightarrow a data distribution μ_{p^*} ,
- \rightarrow and an adversary,

such that for $n = N(\varepsilon, \delta)$ and $\mathbf{D} = \mathbf{\Omega}(\mathbf{n^4} \log(\mathbf{n}/\xi))$,

Adversary $(\Omega(n), 1/3, \xi)$ -traces the data

[ADHLR24] Attias et al. "Information complexity of stochastic convex optimization: Applications to generalization, memorization, and tracing," ICML 2024.

Memorization for $\mathcal{P}_{cvx}^{(D)}$ problem instances

Untraceability of the projected-quantized model (1/2)

Fix arbitrary r > 0 and arbitrary $\mathcal{Z} \subseteq \mathcal{B}_D(1)$.

For any learning algorithm $\mathcal{A} \colon \mathcal{Z}^n \to \mathbb{R}^D$, there exists a projected-quantized algorithm $\mathcal{A}^* \colon \mathcal{Z}^n \to \mathbb{R}^D$, defined as

$$\mathcal{A}^*(S_n) \triangleq \Theta \tilde{\mathcal{A}}(\Theta^{\top} \mathcal{A}(S_n)) = \Theta \hat{W},$$

where $\Theta \in \mathbb{R}^{D \times d'}$, $\Theta \sim P_{\Theta}$ independent of (S_n, W) for $\mathbf{d}' = \mathbf{500r} \log(\mathbf{n})$, such that for any data distribution μ , the following conditions are met simultaneously:

i. Generalization error of the auxiliary model $\Theta \hat{W}$ satisfies

$$\left| \mathbb{E}_{P_{S_n,W}P_{\Theta}P_{\hat{W}|\Theta^{\top}W}} \left[\operatorname{gen}(S_n, W) - \operatorname{gen}(S_n, \Theta\hat{W}) \right] \right| = \mathcal{O}(n^{-r}),$$

0000000

Memorization for $\mathcal{P}_{cvx}^{(D)}$ problem instances

Untraceability of the projected-quantized model (2/2)

- ii. If there exists an adversary which, by having access to both Θ and \hat{W} (hence, $\Theta\hat{W}$), (m,q,ξ) -traces the data, then
 - a. m = o(n) or $\xi \ge q$ (not better than a dummy adversary)
 - **b.** if $m = \Omega(n)$ and $q = \Omega(1)$ (it fails on a non-negligible portion of test samples)

$$\mathbb{P}\Big(\sum_{i\in[n]}\mathcal{Q}(\Theta\hat{W},Z_{i,0},\mu)\geq\Omega(n)\Big)\geq\Omega(1)$$

- Proof idea, based on Fano's inequality for approximate recovery,
 - \bullet Constructing an estimator of the index set ${\bf J}$ based on the adversary's guesses,
 - Showing if this estimator can correctly recover a fraction $c > \frac{1}{2}$ of \mathbf{J} indices, then $\mathsf{CMI}^\Theta(\mu, \mathcal{A}^*) = \Theta(n)$.
- Similar results exist for the following cases:
 - if population risk closeness is considered instead of generalization error
 - for $deterministic \Theta$ (at the expense of the compressed algorithm being dependent on data distribution)

Memorization for $\mathcal{P}_{cvx}^{(D)}$ problem instances

- Consider $\mathbf{D} = \mathbf{\Omega}(\mathbf{n}^4 \log(\mathbf{n}/\xi))$ and any ε -learner algorithm \mathcal{A} with output W
 - [ADHLR24] shows that there **exists a data distribution** for which \mathcal{A} must memorize a large fraction of the training/test data.
 - Our results show that the auxiliary model $\Theta \hat{W}$
 - (i) does not memorize the training/test data for any data distribution,
 - (ii) on average over Θ , generalization errors for models $\Theta \hat{W}$ and W are arbitrarily close.

• Contradiction?

- No! $\Theta \hat{W}$ does not satisfy the bounded conditions required in [ADHLR24].
- In particular, for any w, while $\mathbb{E}_{\hat{W},\Theta}[\Theta\hat{W}] \approx w$, but $\mathbb{E}_{\hat{W},\Theta}[\|\Theta\hat{W}\|^2] = \Omega(D/d') = \Omega(n^3)$.

[ADHLR24] Attias et al. "Information complexity of stochastic convex optimization: Applications to generalization, memorization, and tracing," ICML 2024.

Outline

Problem setup and motivation

Lossy algorithm compression

Projected-quantized CMI bound

Resolving recently raised limitations of classic CMI bounds

Memorization

Implications and Conclusion

Implications and conclusion

• Implications

- Differential privacy
- Sample-compression schemes

Main Contributions

- We introduced stochastic projection together with lossy quantization within the CMI framework, and use them to establish a new lossy-CMI-based generalization bound.
- We showed that the new bound attains the optimal order-wise rate for counterexamples where the CMI bound fails.
- For counterexamples in which any "good" learning algorithm must memorize under a given data distribution, we showed that there exists a closely projected—quantized model that does not memorize under any data distribution.
- Future direction: How to find a 'good' lossy model-compression algorithm?

References

[M98]	McAllester. "Some PAC-Bayesian theorems," COLT 1998.
[XR17]	Xu and Raginsky. "Information-theoretic analysis of generalization capability of learning algorithms," NeurIPS 2017.
[SZ20]	Steinke and Zakynthinou. "Reasoning about generalization via conditional mutual information," COLT 2020.
[NDR20]	Negrea, Dziugaite, and Roy. "In defense of uniform convergence: Generalization via derandomization with an application to interpolating predictors," ICML 2020.
[GKL24]	Grønlund, Kamma, and Larsen. "Near-tight margin-based generalization bounds for support vector machines," ICML 2024.
[SGRS22]	Sefidgaran, Gohari, Richard, and Şimşekli. "Rate-distortion theoretic generalization bounds for stochastic learning algorithms," COLT 2022.
[SCZ22]	Sefidgaran, Chor, and Zaidi. "Rate-distortion theoretic bounds on generalization error for distributed learning," NeurIPS 2022.
[HRTSRD23]	Haghifam, Rodríguez-Gálvez, Thobaben, Skoglund, Roy, and Dziugaite. "Limitations of information-theoretic generalization bounds for gradient descent methods in stochastic convex optimization," ALT 2023.
[L23]	Livni. "Information theoretic lower bounds for information theoretic upper bounds," NeurIPS 2023.
[SZ24]	Sefidgaran and Zaidi. "Data-dependent generalization bounds via variable-size compressibility," IEEE Transactions on Information Theory 2024.
[ADHLR24]	Attias, Dziugaite, Haghifam, Livni, and Roy. "Information complexity of stochastic convex optimization: Applications to generalization, memorization, and tracing," ICML 2024.
[KGBS24]	Nadjahi, Greenewald, Gabrielsson, and Solomon. "Slicing mutual information generalization bounds for neural networks," ICML 2024.