When Does Curriculum Learning Help? A Theoretical Perspective

Raman Arora, Yunjuan Wang, Kaibo Zhang

Johns Hopkins University

NeurIPS 2025

Motivation: Learning Like Humans

Curriculum Learning: Learn complex tasks by progressing through simpler ones

Key Question: When and why does curriculum learning provably help?

Our Approach:

- Develop theoretical framework for multi-task curriculum learning
- Identify conditions for a "good" curriculum
- Provide generalization guarantees (convex & non-convex)

Progressive task difficulty with similar loss landscapes

Our Framework: Biased RERM + (r, α) Condition

Biased Regularized ERM:

$$\hat{w}_t \in rg \min_{w} \left\{ \hat{\mathcal{L}}_{\mathcal{S}_t}(w) + rac{\mu_t}{2} \|w - \hat{w}_{t-1}\|_2^2
ight\}$$

The (r, α) Condition for "Good" Curricula

Tasks t-1 and t satisfy (r_t, α) if:

$$\inf_{w':\|w'-w\|_2 \le r_t} \varepsilon_t(w') \le \alpha \varepsilon_{t-1}(w), \quad \alpha \in (0,1)$$

Intuition: If predictor w has small excess risk on task t-1, there exists a nearby predictor (within radius r_t) with proportionally small excess risk on task t

 \Rightarrow Small r_t enables efficient knowledge transfer!

Main Theoretical Results

Theorem (Convex Lipschitz Tasks)

For convex, ρ_t -Lipschitz tasks satisfying (r_t, α) condition:

$$\mathbb{E}[\varepsilon_t(\hat{w}_t)] \leq \frac{2r_t\rho_t}{\sqrt{n_t}} + \alpha \mathbb{E}[\varepsilon_{t-1}(\hat{w}_{t-1})]$$

Theorem (Smooth Non-negative Convex Tasks)

For H_t -smooth tasks with optimal loss L_t^* :

$$\mathbb{E}[\varepsilon_t(\hat{w}_t)] \leq \sqrt{\frac{32L_t^* H_t r_t^2}{n_t}} + \frac{9H_t r_t^2}{(1-\alpha)n_t} + \frac{1+\alpha}{2} \mathbb{E}[\varepsilon_{t-1}(\hat{w}_{t-1})]$$

Fast rate when $L_t^* = 0$ (realizable): $O(1/n_t)$

Key insight: Sample complexity decreases with small r_t and good initialization from previous task!

Extensions and Additional Results

1. SGD-based Training

Same bounds achievable with efficient SGD (learning rate $\eta_t = \frac{r_t}{\rho_t \sqrt{n_t}}$)

2. Non-convex Settings

For Lipschitz non-convex losses via ERM with constraint $\|w - \hat{w}_{t-1}\|_2 \leq r_t$:

$$\varepsilon_t(\hat{w}_t) \leq 2\epsilon + \alpha \varepsilon_{t-1}(\hat{w}_{t-1})$$
 with high probability

3. Application to Adversarial Robustness

Results extend to adversarially robust learning by replacing standard loss with:

$$\ell_t^{\text{rob}}((x,y);w) := \sup_{\tilde{x} \in \mathcal{B}(x)} \ell_t((\tilde{x},y);w)$$

Convexity and Lipschitzness preserved!

Experimental Validation

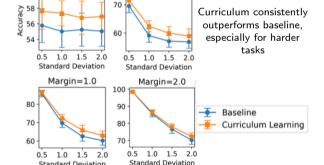
Raman Arora, Yuniuan Wang, Kaibo Zhang (IHU)

Margin=0.1

60

Synthetic Data (Gaussian Mixtures)

- Easy task: large margin ($\gamma=3$), low variance ($\sigma=0.5$)
- Hard task: varying $\gamma \in [0.1, 2.0]$, $\sigma \in [0.5, 2.0]$



Margin=0.5

Adversarial Training on MNIST

- Progressive attack strength: $\alpha t/T$ for $t \in [T]$
- ullet ℓ_2 regularization to previous model

-	α	T=1 (Baseline)		T=3 (Curriculum)	
		Nat	PGD	Nat	PGD
	0.1	99.18	96.07	99.36	95.74
	0.3	98.27	92.77	98.23	93.61
	0.4	11.35	11.35	98.52	95.63

Significant improvements for stronger attacks

Conclusion and Impact

Main Contributions

- **①** (r, α) **condition**: Simple, interpretable criterion for curriculum quality
- Theoretical guarantees: Excess risk bounds for convex and non-convex settings
- Operation Practical insights: Guidelines for task ordering and regularization parameter selection
- **Validated framework**: Synthetic and real data experiments confirm theory

Key Takeaway: Small r_t (nearby optimal solutions) enables reduced sample complexity through curriculum learning

Future Directions:

- Practical methods to verify (r, α) condition
- Data-driven curriculum design
- Extensions to deep learning architectures

