NeurIPS 2025

# Efficient Multi-bit Quantization Network Training via Weight Bias Correction and Bit-wise Coreset Sampling

Jinhee Kim\*, Jae Jun An\*, Kang Eun Jeon, and Jong Hwan Ko

\*Equal Contribution

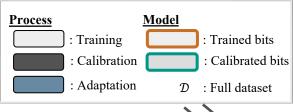






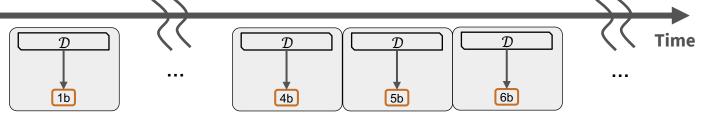
### **Our Motivation & Objective**

Reduce training cost of mult-bit quantization networks



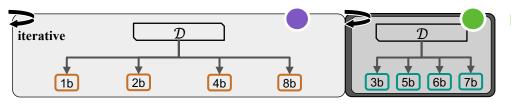
#### **Dedicated Models**

multiple INT models



### **AnyPrecision**

single FP parent model quantized to INT child models



**BN Calibration Stage** 

#### **Need to eliminate post-training calibration:**

**Requiring separate BN layers** for different bit-width models force additional calibration stages.

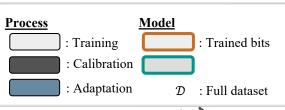
→ Additional overhead and complicated training pipelines.

#### Lack of adaptive data utilization across bit-widths:

Current multi-bit networks require full-dataset updates for every supported bit-width  $\rightarrow$  *Training cost that scales with the number of precisions.* 

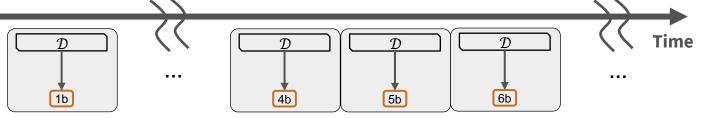
## **Our Motivation & Objective**

Reduce training cost of mult-bit quantization networks



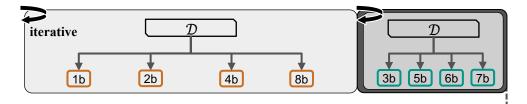
#### **Dedicated Models**

multiple INT models



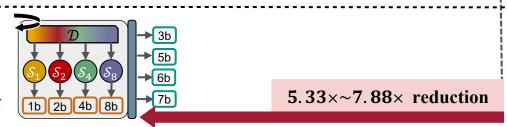
### **AnyPrecision**

single FP parent model quantized to INT child models



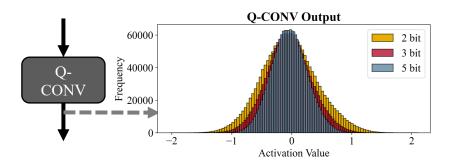
#### Ours

With weight bias correction and bit-wise coreset sampling, significantly reduce training cost

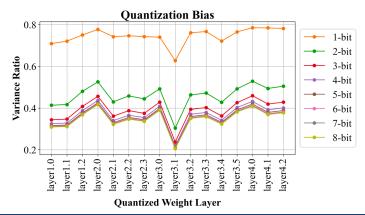


### **Observation 1**

### Activation mismatch originates from quantization-induced weight bias



**Fig.** Mismatch in activation distributions between bit-widths (top), and variance ratio between quantized and original weights (bottom)



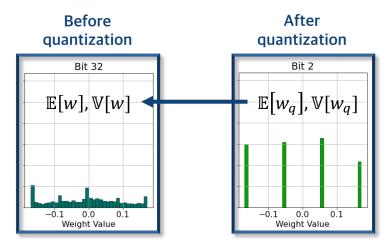


Fig. Full-precision and quantized weights

$$w_q' = \sqrt{\frac{\mathbb{V}[w]}{\mathbb{V}[w_q]}} \Big( w_q + \big( \mathbb{E}[w] - \mathbb{E}[w_q] \big) \Big)$$

$$\text{Weight Bias Correction} \\ \text{Mean/variance correction term} \\ \text{Adaptation}$$

### **Observation 2**

### 1) Gradient alignment across bit-widths, 2) Temporal drift in sample importance

# 1. Gradient alignment across bit-widths

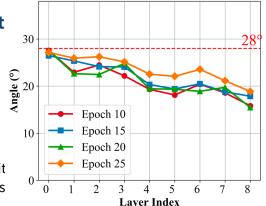
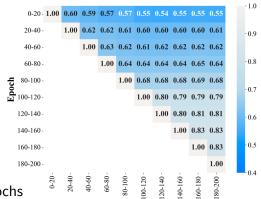


Fig. Angle between the 8-bit 2-bit gradients across layers

#### **Bit-wise training for score extraction:**

Obtain per-bit importance scores by isolating gradients, and without interference from other precisions.

# 2. Temporal drift in sample importance

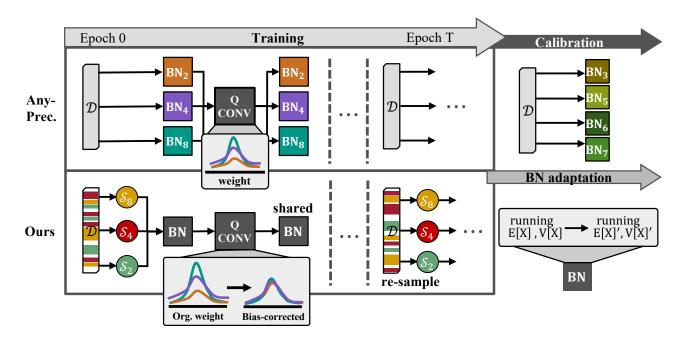


**Fig.** Spearman correlation between ranks at different epochs

### Temperature-based sampling

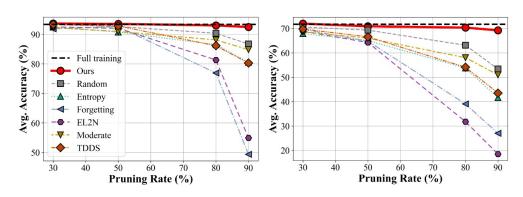
Balance focus on high-importance samples and maintaining diversity.

# **Overview of EMQNet**



EMQNet trains a multi-bit network by applying **weight bias correction** for bit-width activation alignment and **bit-wise coreset sampling** guided by per-bit importance scores.

# **Accuracy Evaluations**



- Our method consistently outperforms six baselines and maintains strong performance even at 90% data pruning.
- **Fig.** Average accuracy across all bit-widths on CIFAR-19 (left), CIFAR-100 (right)

 Our method achieves up to ~8.41× faster training with competitive or higher accuracy across all bit-widths on ViTs.

**Tab.** ViTs on TinyImageNet for different pruning rates

| Dataset      | Framework | Pruning<br>Rate | Test Accuracy |       |       |       |       | GPU hours              |
|--------------|-----------|-----------------|---------------|-------|-------|-------|-------|------------------------|
|              |           |                 | 2bit          | 4bit  | 6bit  | 8bit  | Avg.  | (Speed up)             |
| CIFAR-100    | Dedicated | -               | 87.14         | 87.92 | 87.88 | 88.03 | 87.74 | 41.01 (1.00×)          |
|              | Any-Prec. | -               | 87.52         | 88.30 | 88.20 | 88.21 | 88.08 | 10.47 (3.92×)          |
|              | Ours      | 50%             | 87.83         | 88.56 | 88.68 | 88.59 | 88.43 | 6.05 ( <b>6.78</b> ×)  |
|              |           | 60%             | 87.61         | 88.45 | 88.54 | 88.65 | 88.31 | 5.20 ( <b>7.89</b> ×)  |
| TinyImageNet | Dedicated | -               | 82.61         | 85.60 | 85.68 | 85.86 | 84.94 | 74.00 (1.00×)          |
|              | Any-Prec. | -               | 82.10         | 84.61 | 84.47 | 84.70 | 84.07 | 19.32 (3.83×)          |
|              | Ours      | 50%             | 82.54         | 84.95 | 85.33 | 85.17 | 84.59 | 10.50 ( <b>7.05</b> ×) |
|              |           | 60%             | 82.89         | 84.39 | 84.95 | 84.86 | 84.26 | 8.80 ( <b>8.41</b> ×)  |

### **Breakdown of GPU hours**

Tab. GPU hours breakdown for CIFAR-10 and CIFAR-100

| Dataset     |                                           |          | Total GPU   |            |                |                       |
|-------------|-------------------------------------------|----------|-------------|------------|----------------|-----------------------|
|             | Framework                                 | Training | Calibration | Adaptation | Scoring        | hours (Speed up)      |
| CIFAR-10 -  | Dedicated                                 | 11.97    | -           | -          | -              | 11.97 (1.00×)         |
|             | Any-Prec.                                 | 7.51     | 1.25        | -          | -              | 8.76 (1.36×)          |
|             | Bias Correction                           | 7.51     | -           | 0.004      | -              | 7.52 (1 <b>.59</b> ×) |
|             | <b>Bias Correction + Coreset Sampling</b> | 1.52     | -           | 0.004      | 0.37 (offline) | 1.52 <b>(7.88</b> ×)  |
| CIFAR-100 - | Dedicated                                 | 11.19    | -           | -          | -              | 11.19 (1.00×)         |
|             | Any-Prec.                                 | 7.17     | 1.10        | -          | -              | 8.27 (1.36×)          |
|             | Bias Correction                           | 7.17     | -           | 0.004      | -              | 7.17 <b>(1.56×)</b>   |
|             | Bias Correction + Coreset Sampling        | 1.47     | -           | 0.004      | 0.74 (offline) | 1.47 <b>(7.61</b> ×)  |

- Coreset sampling notably reduces training GPU hours for multi-bit quantization models.
- However, coreset sampling cannot remove the cost of the calibration phase by itself.
- Bias Correction and BN Adaptation are applied to eliminate the calibration step.

### Conclusion

### Identified the training bottleneck for multi-bit networks

- The extra calibration phase to align activation distributions is expensive.
- Each supported bit-width requires full-dataset updates

### Proposed bias correction and bit-wise coreset sampling

- OBS 1) Activation mismatch originates from quantization-induced weight bias
- OBS 2) Gradients across bit-widths are highly aligned, and sample importance drifts over time

### Accuracy and training cost reduction

- Consistent efficiency gains across ResNet and ViT architectures
- Achieves up to 7.88× reduction in training GPU hours

# - END -

Questions or comments?