



# LLM-Explorer: A Plug-in Reinforcement Learning Policy Exploration Enhancement Driven by Large Language Models

Qianyue Hao, Yiwen Song, Qingmin Liao, Jian Yuan, Yong Li Department of Electronic Engineering, Tsinghua University

**Speaker: Qianyue Hao** 

#### Backgrounds: RL before LLMs

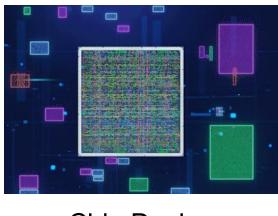
#### Wide applications across various tasks



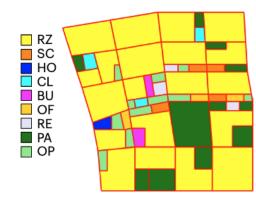
**Transportation** 



Go Game



Chip Design



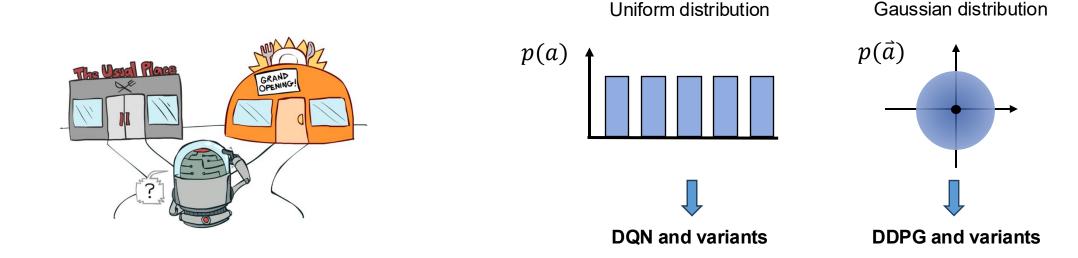
**Urban Planning** 

#### (Super-) human level performance

- [1] Silver D, Schrittwieser J, Simonyan K, et al. Mastering the game of go without human knowledge. *Nature*, 2017.
- [2] Mirhoseini A, Goldie A, et al. A graph placement methodology for fast chip design. Nature, 2021.
- [3] Zheng Y, Lin Y, Zhao L, et al. Spatial planning of urban communities via deep reinforcement learning. *Nature Computational Science*, 2023.
- [4] Zheng Y, Hao Q, et al. A Survey of Machine Learning for Urban Decision Making: Applications in Planning, Transportation, and Healthcare. ACM Computing Surveys, 2024.

### Backgrounds: policy exploration in RL

#### Fixed stochastic processes



- Lack flexibility: preset stochastic processes applied uniformly across all kinds of tasks without any environment-specific design, neglecting the unique characteristics of different tasks.
- Lack adaptability: fail to flexibly adjust the policy exploration strategy based on the agent's real-time learning status, potentially reducing the effectiveness of policy exploration.

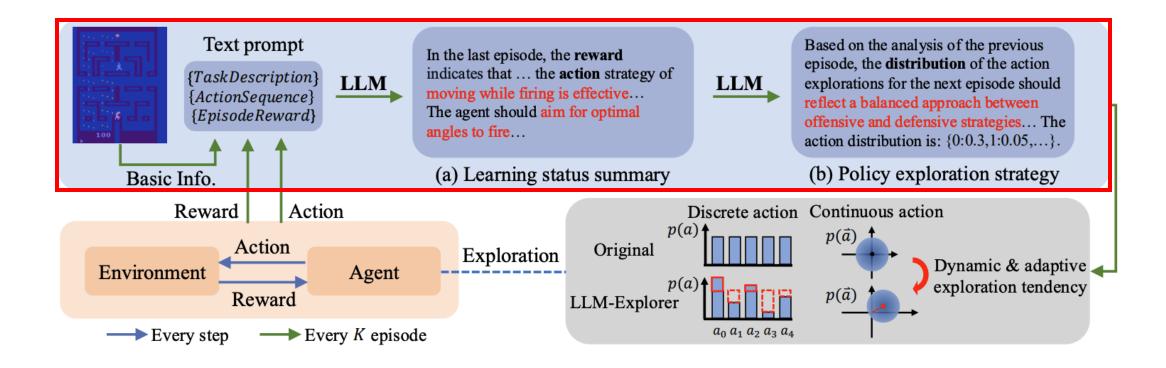
<sup>[1]</sup> Mnih V, Kavukcuoglu K, Silver D, et al. Human-level control through deep reinforcement learning. *Nature*, 2015.

<sup>[2]</sup> Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning. ICLR, 2016.

<sup>[3]</sup> Fortunato M, Azar M G, Piot B, et al. Noisy networks for exploration. ICLR, 2018.

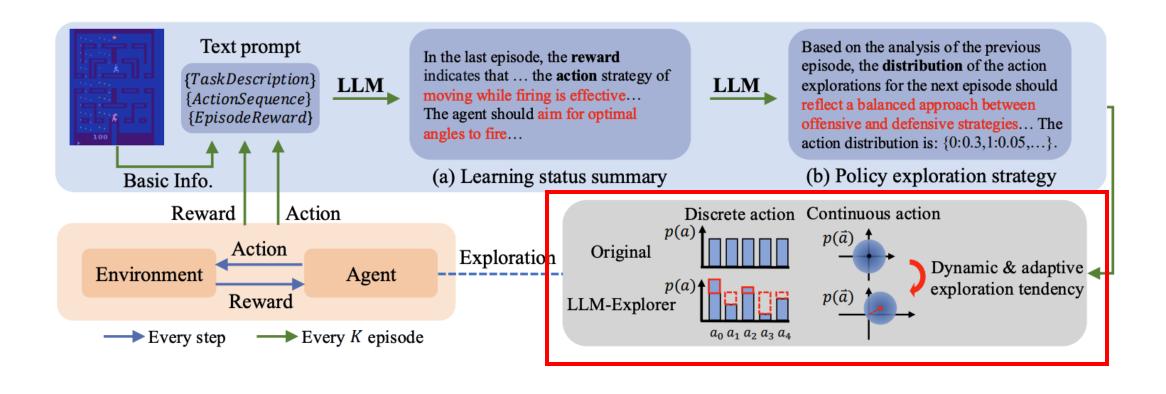
# Method: LLM guides policy exploration

#### LLMs workflow to analyze the task feature and learning status

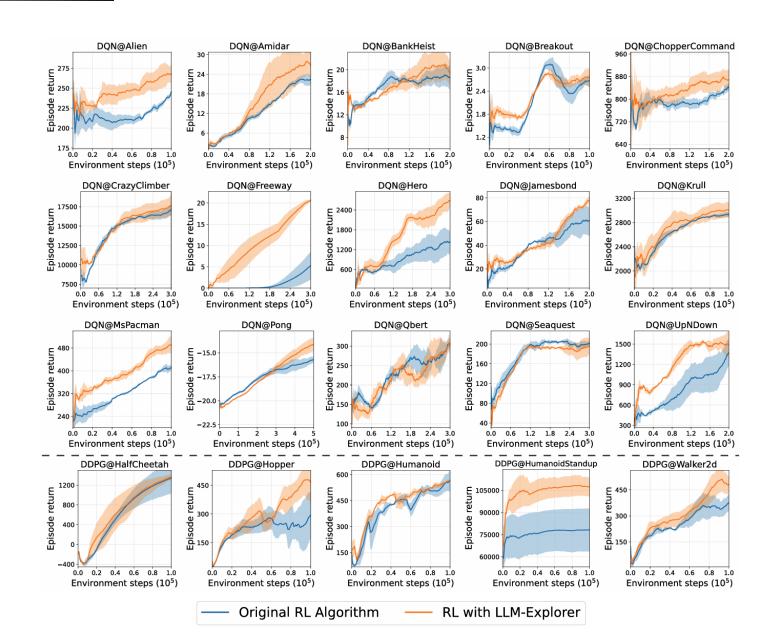


# Method: LLM guides policy exploration

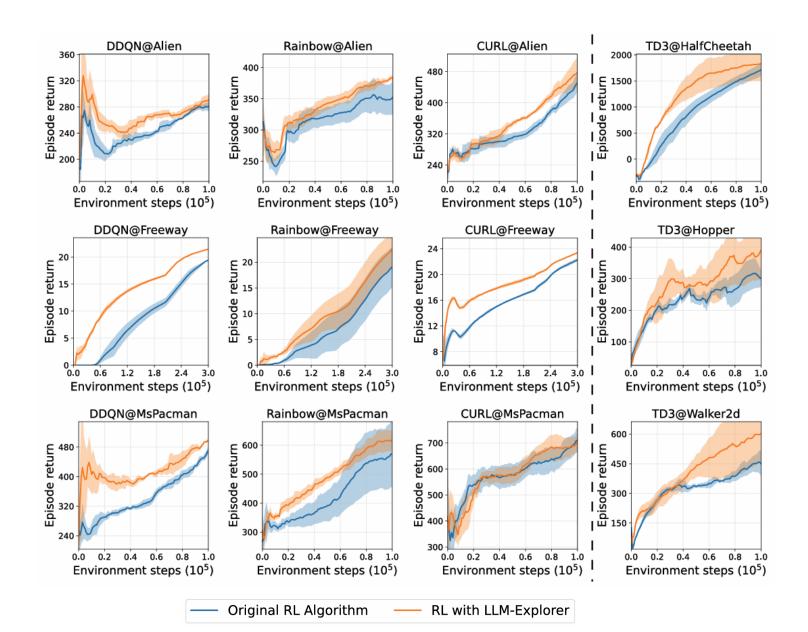
Plug-in design that is compatible with various existing RL algorithms



#### Performance: effective on various tasks



### Performance: compatible with RL algorithms



### Analyses: ablations on workflow design

| Task                         | DQN                   | DQN+LLM-Explorer                                      |                            |                            |                                                       |                           |                           |                                                       |                            |                            |
|------------------------------|-----------------------|-------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------|---------------------------|---------------------------|-------------------------------------------------------|----------------------------|----------------------------|
|                              |                       | Full design                                           |                            |                            | w/o summarize & suggestion                            |                           |                           | w/o environment information                           |                            |                            |
|                              |                       | Score                                                 | Token in (k)               | Token out (k)              | Score                                                 | Token<br>in (k)           | Token out (k)             | Score                                                 | Token<br>in (k)            | Token out (k)              |
| Alien<br>Freeway<br>MsPacman | 0.26<br>17.75<br>1.56 | $\frac{0.59}{69.71} \\ \underline{\frac{2.75}{2.75}}$ | 248.73<br>220.12<br>291.30 | 179.59<br>138.75<br>201.22 | $\frac{0.51}{68.97} \\ \underline{\frac{2.32}{2.32}}$ | 111.07<br>88.91<br>129.18 | 112.54<br>69.94<br>125.22 | $\frac{0.38}{61.26} \\ \underline{\frac{1.89}{1.89}}$ | 186.41<br>164.38<br>222.05 | 165.90<br>134.93<br>208.31 |

- The full design workflow is critical for achieving the best performance.
- Simplify the workflow can reduce computational consumption while still maintaining certain performance.