

Reward Reasoning Model

Jiaxin Guo*12, Zewen Chi*1, Li Dong*1

Qingxiu Dong¹³, Xun Wu¹, Shaohan Huang¹, Furu Wei¹ ¹ Microsoft Research ² Tsinghua University ³ Peking University https://aka.ms/GeneralAI

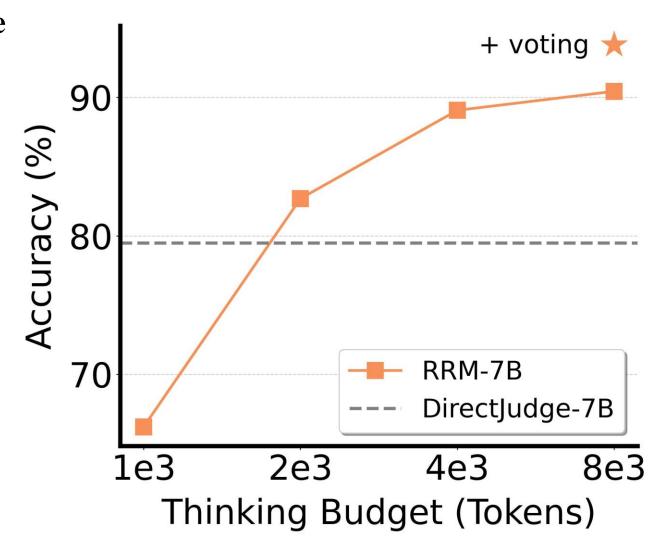
> Presenter: Jiaxin Guo Tsinghua University https://xinyuerufei.github.io

1. Background and Motivation

Challenge: How can a reward model allocate more compute to harder tasks?

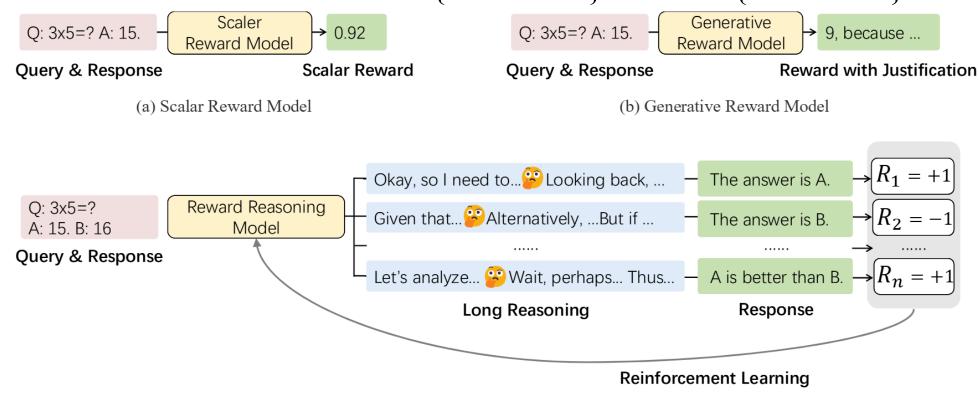
• Current reward models lack adaptive compute scaling, using nearly uniform computation for all inputs.

• This inflexibility **limits their reasoning capability** on complex or multi-step problems.



2. Methods

- Input: (Query, Response 1, Response 2)
- Output: Autoregressive text containing
 - → a reasoning process
 - \rightarrow a final decision in the format \boxed{Assistant 1} or \boxed{Assistant 2}

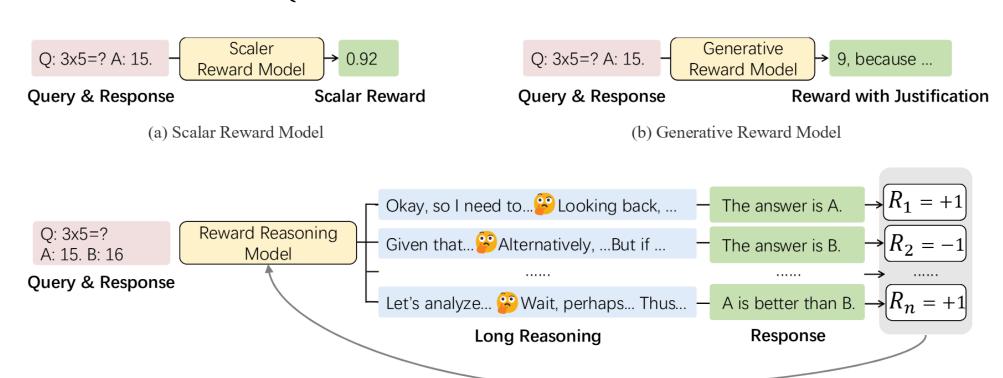


(c) Reward Reasoning Model

2. Methods

Training via Reinforcement Learning

$$R = \begin{cases} +1, & if RRM \ selects \ correct \ response \\ -1, & otherwise \end{cases}$$



Reinforcement Learning

(c) Reward Reasoning Model

Results on Reward Benchmarks

Table 1: Evaluation results on RewardBench benchmark and PandaLM Test. **Bold** numbers indicate the best performance, <u>Underlined numbers</u> indicate the second best.

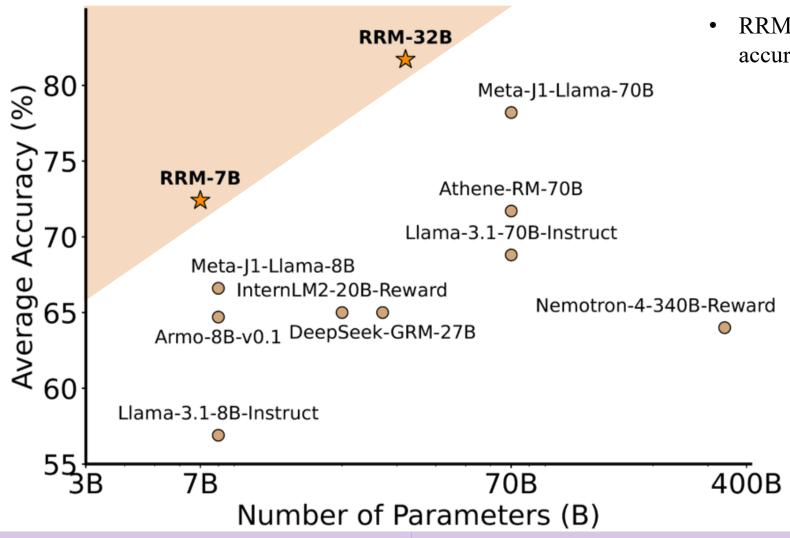
Models	RewardBench				PandaLM Test		
	Chat	Chat Hard	Safety	Reasoning	Overall	Agreement	F1
Skywork-Reward-Gemma-2-27B-v0.2 [40]	96.1	89.9	93.0	98.1	94.3	76.6	76.4
JudgeLM-7B [82]	87.3	43.6	74.5	48.7	63.5	65.1	61.9
JudgeLM-33B [82]	92.7	54.2	85.8	58.3	72.3	75.2	69.7
Claude-3.5-Sonnet-20240620 [35]	<u>96.4</u>	74.0	81.6	84.7	84.2	-	-
DeepSeek-R1 [42, 12]	97.1	73.7	73.3	95.6	84.9	78.7	72.5
DeepSeek-GRM-27B [42]	94.1	78.3	88.0	83.8	86.0	-	-
GPT-4-0125-preview [35]	95.3	74.3	87.6	86.9	86.0	66.5	61.8
GPT-40-0806 [35]	96.1	76.1	86.6	88.1	86.7	-	-
RM-R1-DeepSeek-Distilled-Qwen-7B [14]	88.9	66.2	78.4	87.0	80.1	-	-
RM-R1-DeepSeek-Distilled-Qwen-14B [14]	91.3	91.3	79.4	95.5	88.9	-	-
RM-R1-DeepSeek-Distilled-Qwen-32B [14]	95.3	80.3	91.1	96.8	90.9	-	-
DirectJudge-7B	86.0	69.7	85.5	79.5	80.2	70.3	70.2
DirectJudge-32B	96.1	85.1	89.5	90.9	90.4	76.7	77.4
RRM-7B	87.7	70.4	80.7	90.0	82.2	72.9	71.1
RRM-7B (voting@16)	92.1	71.5	81.3	93.8	84.8	75.9	77.8
RRM-32B	94.7	81.1	90.7	<u>98.3</u>	91.2	<u>78.8</u>	79.0
RRM-32B (voting@16)	96.1	81.4	<u>91.6</u>	98.6	<u>91.9</u>	$\overline{80.2}$	81.9

Results on Reward Benchmarks

Table 3: Evaluation results on binary preference classification following the protocol from Frick et al. [18]. For each benchmark, we report accuracy over a single random permutation of paired responses.

Models	MMLU-Pro	MATH	GPQA	Overall
Skywork-Reward-Gemma-2-27B [67]	55.0	46.2	44.7	48.6
Gemma-2-27B [42]	66.2	66.4	51.9	61.5
DeepSeek-GRM-27B (voting@32) [42]	65.5	69.4	56.0	63.6
DeepSeek-GRM-27B (MetaRM) (voting@32) [42]	68.1	70.0	56.9	65.0
Llama-3.1-8B-Instruct [67]	56.3	62.9	51.4	56.9
Llama-3.1-70B-Instruct [67]	72.1	73.1	61.2	68.8
J1-Llama-8B (SC@32) [67]	67.5	76.6	55.7	66.7
J1-Llama-70B (SC@32) [67]	79.9	88.1	66.5	78.2
RRM-7B	66.5	88.0	57.9	70.3
RRM-7B (voting@5)	68.3	90.5	58.3	72.4
RRM-32B	80.5	94.3	67.4	80.7
RRM-32B (voting@5)	81.3	95.4	68.4	81.7

Frontier Reward Modeling Performance

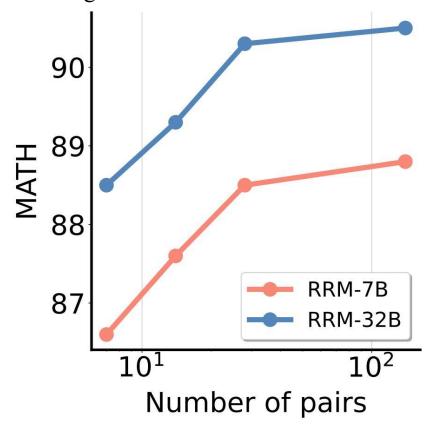


• RRMs dominate the top-left region, showing higher accuracy with much smaller model sizes.

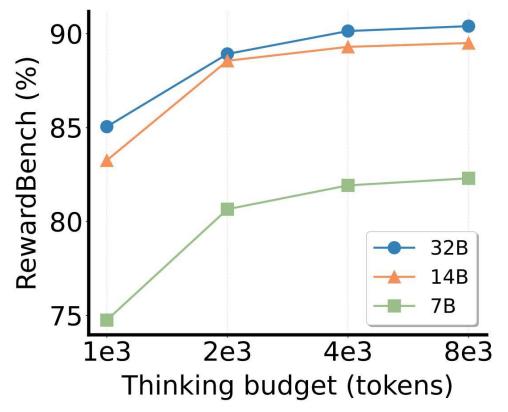
7

Test-Time Scaling (TTS)

• Parallel TTS: RRMs effectively utilize increased computational budgets—more comparisons yield consistent gains.



• Sequential TTS: RRMs achieve higher accuracy with longer reasoning horizons, effectively leveraging extended token budgets for better rewards.



Adaptive Compute Allocation

• RRMs dynamically adjust reasoning length based on task complexity. Table shows average number of tokens before the

 /think> token on RewardBench subtypes.)

Task Subtype	Average Thinking Length (Tokens)
Chat	421.97
Chat Hard	363.71
Safety	319.62
Reasoning	848.13

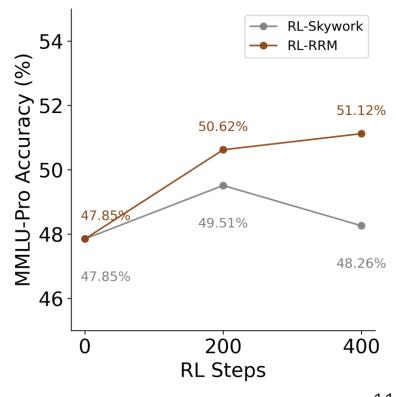
Direct Preference Optimization with RRM Annotators

• RRMs can serve as high-quality preference annotators for post-training. Table shows performance of DPO post-trained Qwen2.5-7B models on Arena-Hard.

Model	Arena-Hard Score	95% CI
Before Post-Training		
Base Model	18.3	(-1.61, +1.66)
After DPO Post-Training (Preference Annotators)		
GPT-4o	51.9	(-2.96, +2.93)
RRM-7B	53.8	(-1.72, +1.85)
RRM-32B	55.4	(-2.60, +2.67)

RL with RRM Rewards

- RRM-guided RL on **unlabeled** WebInstruct data steadily improves model performance throughout training **in general domain**.
- Compared with scalar-RM baselines (Skywork), RRM-guided RL achieves higher and more stable gains.



Thanks for watching!