Non-Asymptotic Analysis of Data Augmentation for Precision Matrix Estimation

Lucas Morisset^{1,2}, Adrien Hardy¹, Alain Durmus²

¹ Qube Research and Technologies, ² Ecole Polytechnique

Introduction

High-dimensional covariance matrices estimation

In high-dimension (number of feature d comparable to samples n), the sample covariance $C_X = n^{-1}XX^{\mathsf{T}}$, where $X \in \mathbb{R}^{n \times d}$, is a noisy estimate of the population covariance Σ .

Random matrix theory explains this: as $d, n \to \infty$ with $d/n \to \gamma$, the eigenvalue distribution of C_X converge to the Marchenko-Pastur distribution, which differs from the eigenvalues distribution of Σ .

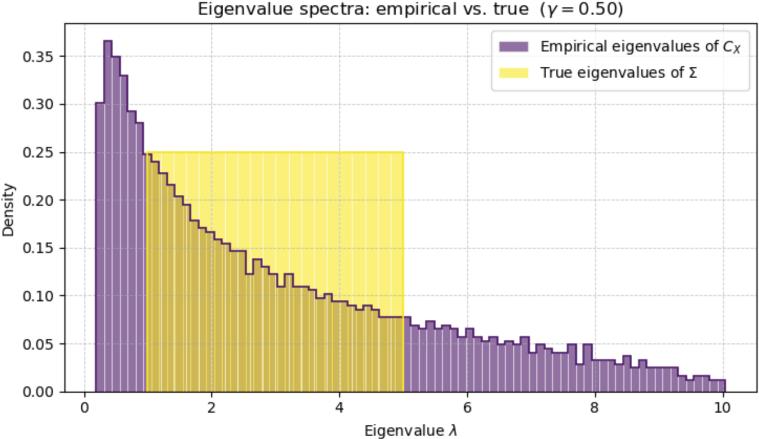


Figure 1 - $\Sigma = Diag((\lambda_i)_{i=1}^{2000})$, where $\lambda_i = 1 + i / 500$, and $C_X = n^{-1}XX^{\mathsf{T}}$, for $X_{i,:} \sim N(0, \Sigma)$.

Shrinkage estimators

To alleviate the high-dimensional effects, and in a scarse data regime, practitioners have developed so-called shrinkage estimators, which involves a combinaison of a noisy (high-variance) estimate, typically C_X , with a stable (low variance, high-bias) target **T**, of the form,

$$S(\alpha) = (1 - \alpha) C_X + \alpha T$$
, or $S(\alpha) = C_X + \alpha T$.

Common choices for **T** include the identity matrix, or T = diag(Cx).

Data Augmentation as a natural way to shrink your covariance

Consider an augmented dataset $X \sqcup G$, where G consists of artificial data. Assuming X and G are both centered, we rewrite the augmented covariance,

$$C_{X \sqcup G} = (1 - \alpha) C_X + \alpha C_G$$
, with $\alpha = |G|/(|X| + |G|)$.

Augmenting the dataset yields a shrinkage-like estimator, where $T = C_G$.

Given a data augmentation scheme, can we optimize the induced regularization to produce more robust estimates of the covariance and precision matrices in the high-dimensional regime?

Optimal shrinkage: Non Augmented case Methodology

We consider a Ridge-like estimator of the precision matrix, define for $\lambda \geq 0$:

$$R_X(\lambda) = (C_X + \lambda I_d)^+, \qquad \mathcal{E}_X(\lambda) = d^{-1}||R_X(\lambda) - \Sigma^{-1}||_F$$

We estimate $\mathcal{E}_X(\lambda)$ up to an additive constant, and minimize our estimator w.r.t. λ . To this end, we define,

$$\hat{\mathcal{E}}_X(\lambda) = \frac{1}{d} \left(\text{tr}(R_X(\lambda)^2) - \frac{2(1-\gamma_n)}{\lambda} \text{tr}(R_X(0)) + \frac{2}{\lambda \rho(\lambda)} \text{tr}(R_X(\lambda)) \right),$$

$$\rho(\lambda) = \frac{1}{1-\gamma_n + \lambda/n \text{tr}(R_X(\lambda))}, \quad \gamma_n = d/n.$$

Then,

Meta-Theorem 1:

Assuming the samples of X are σ sub-Gaussian, we have for all $\lambda \geq 0$,

$$\left|\hat{\mathcal{E}}_X(\lambda) - \mathcal{E}_X(\lambda) + \frac{1}{d} tr(\Sigma^2)\right| \le t + O\left(\frac{\sigma^2 \sqrt{d} \lambda_{max}(\Sigma)^3}{n \eta^7} + \frac{1}{\eta^3 nd}\right)$$

where $\eta = \min\{\lambda, \lambda_{min}(\Sigma)\}$, and with probability $\geq 1 - \exp(-c\eta^4\sigma^2n^2t^2)$.

Numerical results on MNIST & CIFAR10

We estimate Σ using all the data (full curves) and simulate the high dimensional scenario by keeping only $n=d/\gamma$ samples (dashed curved).

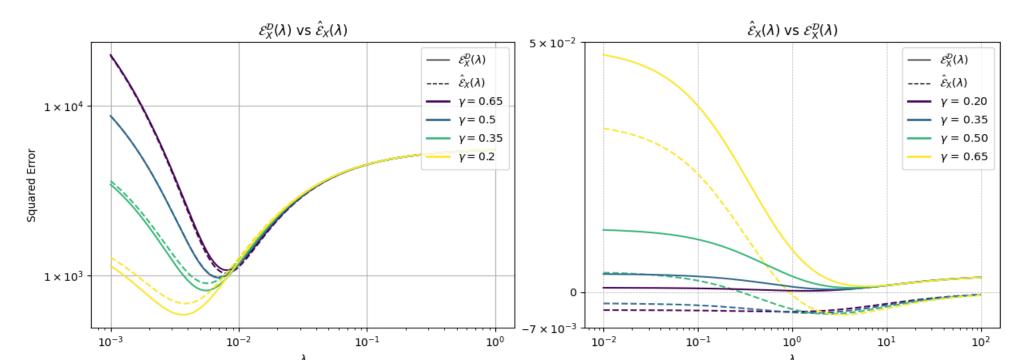


Figure 2 – Simulation of theorem 1 on MNIST (left) and CIFAR10 (right).

Optimal shrinkage: Augmented case

We consider the augmented estimator, and its error,

$$R_{Aug}(\lambda) = (C_{X \sqcup G} + \lambda I_d)^+, \qquad \mathcal{E}_{Aug}(\lambda) = d^{-1}||R_{Aug}(\lambda) - \Sigma^{-1}||_{F}.$$

Where the artificial dataset *G* is obtained by either

- Randomly transforming the true samples in *X*.
- Sampling from a complex generative model, fitted on X.

We make a sequence of assumption on the distribution of the artificial dataset (fully detailed in the paper):

- Σ is well conditionned.
- Samples of *X* are sub-Gaussian, and of the ones of *G* are sub-gaussian conditionally on *X*.
- The distribution of the artificial data is stable under small perturbation of *X*, and stable under removal of one of the samples of *X*.
- The data augmentation scheme can be sampled conditionally to X.

Then, we provide a function $\hat{\mathcal{E}}_{Aug}(\lambda)$ computable up to an additive constant, such that,

Meta-Theorem 2:

Under the previous set of assumptions, we have for all $\lambda \geq 0$,

$$\left|\hat{\mathcal{E}}_{Aug}(\lambda) - \mathcal{E}_{Aug}(\lambda)\right| \le t + O\left(\frac{1}{\eta^9 \sqrt{n}} + \frac{\lambda_{max}(\Sigma)^2 || [E[C_G], \Sigma]||_F}{\sqrt{n} \eta^2}\right)$$

where $\eta = \min\{\lambda, \lambda_{min}(\Sigma)\}$, and with probability going to 1 as $n \to +\infty$.

Numerical results on MNIST & CIFAR10

We consider two data augmentation satisfying the previous assumption:

- A Gaussian noise injection, $x \mapsto x + \sigma \varepsilon$, where $\varepsilon \sim N(0,1)$.
- A Gaussian mixture model fitted on *X* using the EM-algorithm.

We optimize the data augmentation over $\alpha = |G|/(|X| + |G|)$.

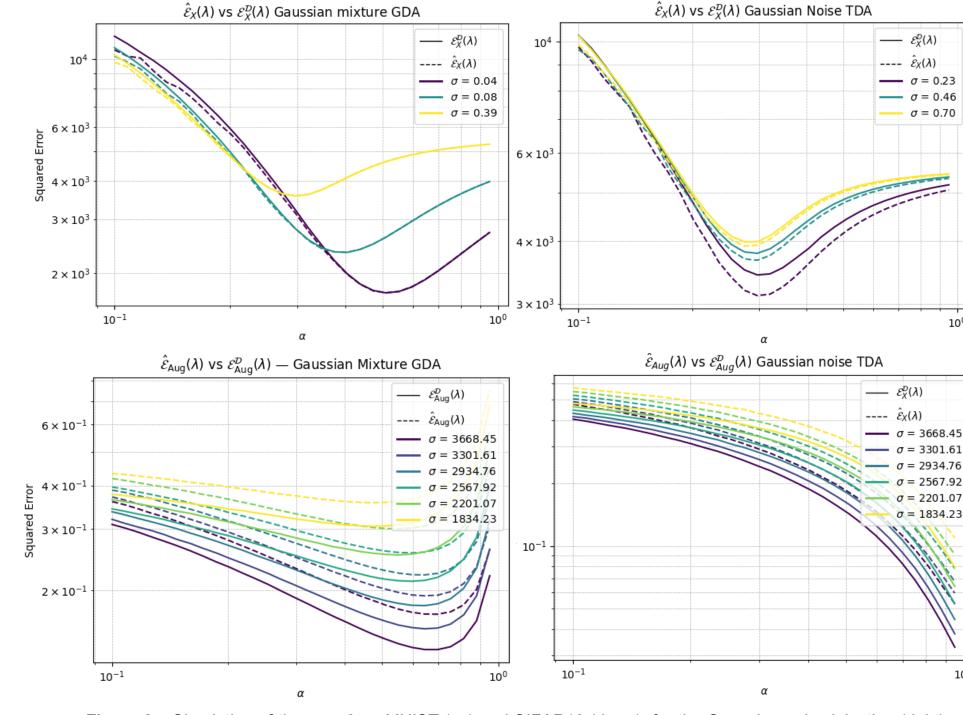


Figure 2 – Simulation of theorem 2 on MNIST (up) and CIFAR10 (down), for the Gaussian noise injection (right) and Gaussian mixture model (left)