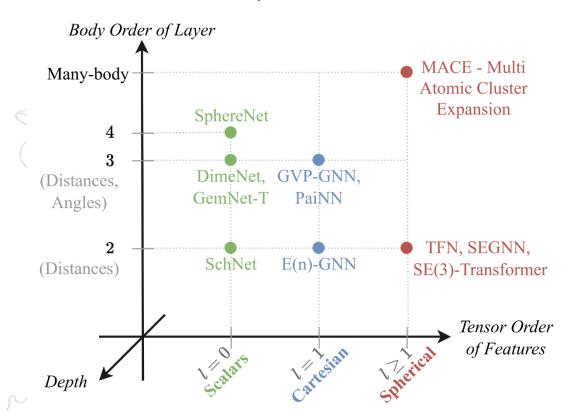


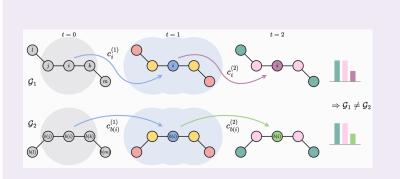
Universally Invariant Learning in Equivariant GNNs

Jiacheng Cen, Anyi Li, Ning Lin, Tingyang Xu, Yu Rong
Deli Zhao, Zihe Wang, Wenbing Huang
2025.10.01



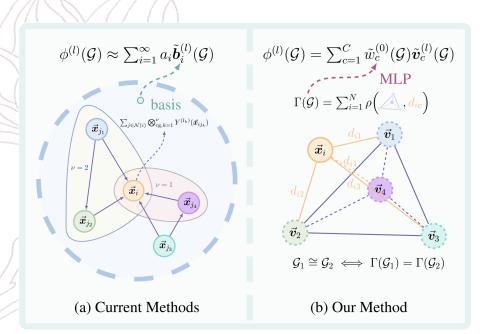
Major equivariant GNNs Paradigm

Common ways to improve equivariant GNNs' expressiveness:


- ➤ Increase **Body Order**
- > Increase Represetation Degree
- > Increase Model Layer

Represetation Degree ++ (e.g.TFN, SEGNN, HEGNN)

Model Layer ++ (e.g. GWL test)

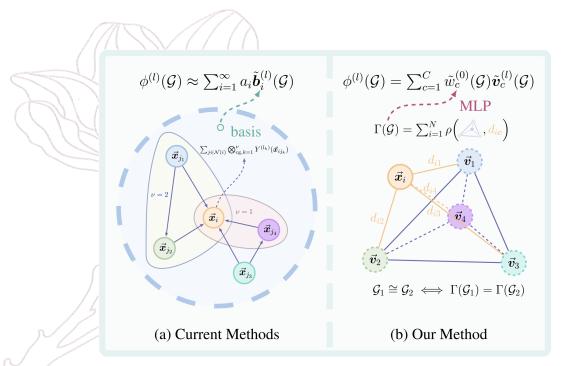

Rethinking from Basis Construction

Example 3.1 (Basis Set of Common Equivariant GNNs). The basis set for common equivariant GNNs, such as EGNN [38], HEGNN [41], TFN [28], and MACE [30], can be unified into the following form:

$$\mathbb{B}_{\nu}^{(l)} = \{ \sum_{i} \sum_{j \in \mathcal{N}(i)} \bigotimes_{\text{cg},k=1}^{\nu} Y^{(l_k)}(\vec{x}_{ij_k}/\|\vec{x}_{ij_k}\|) \}, \tag{3}$$

where $\nu \geq 1$ denotes the body order, $j = (j_1, \ldots, j_{\nu})$ represents all chosen ordered neighbors, and $\vec{x}_{ij_k} \coloneqq \vec{x}_i - \vec{x}_{j_k}$. When only single-body neighbor is considered (i.e., $\nu = 1$), Eq. (3) forms the basis set for EGNN [38] and HEGNN [41], applicable to degrees l = 1 and $l \geq 1$, respectively. In contrast, for multi-body interactions, Eq. (3) corresponds to TFN [28] when the body order $\nu = 1$, or MACE [30] with higher body orders $\nu \geq 1$.

- Expanding from single-particle functions to multi-particle functions
- Extensions between function bases require **tensor products**
- Requires extremely high order and model layers to improve expressiveness
- > Extremely computationally expensive
- Complete under ideal (but completely unrealistic) circumstances



Reformulating from Output Space

Theorem 3.2 (Dynamic Method). Given a geometric graph \mathcal{G} , suppose there is a matrix $\tilde{V}^{(l)}(\mathcal{G})$ with C channels of lth-degree steerable features denoted as $\tilde{v}_c^{(l)}(\mathcal{G})$ satisfying $\operatorname{span}(\tilde{V}^{(l)}(\mathcal{G})) = \mathbb{F}^{(l)}(\mathcal{G}) := \{\tilde{f}^{(l)}(\mathcal{G}) \mid \tilde{f}^{(l)} \in \mathbb{F}^{(l)}\} \subset \mathbb{R}^{2l+1}$. Then for any lth-degree steerable function $\tilde{\phi}^{(l)} \in \mathbb{F}^{(l)}$, there always exists $\tilde{w}^{(0)}(\mathcal{G}) := [\tilde{w}_c^{(0)}(\mathcal{G})]_{c=1}^C$ with C-channel output scalars, such that

$$\tilde{\boldsymbol{\phi}}^{(l)}(\mathcal{G}) = \sum_{c=1}^{C} \tilde{w}_c^{(0)}(\mathcal{G}) \tilde{\boldsymbol{v}}_c^{(l)}(\mathcal{G}). \tag{4}$$

- ➤ Is it possible, and under what conditions, to achieve completeness (universal approximation)?
- ➤ How can the required complete scalar function be efficiently implemented?
- ➤ How can the corresponding full-rank basis functions be obtained?

Geo. Iso. & Canonical Form

- > Transform the problem of complete scalar functions into determining geometric graph isomorphism.
- Further recast determining geometric graph isomorphism as constructing a **canonical form for geometric** graphs.

Definition 3.3 (Geometric Isomorphism). Two geometric graphs $\mathcal{G}(\vec{X}^{(\mathcal{G})}, A^{(\mathcal{G})})$ and $\mathcal{H}(\vec{X}^{(\mathcal{H})}, A^{(\mathcal{H})})$ are called geometrically isomorphic if they fulfill both of the following isomorphisms

- 1. **Point Cloud Isomorphism:** The two point clouds $\vec{X}^{(\mathcal{G})}$ and $\vec{X}^{(\mathcal{H})}$ are isomorphic, i.e., $\exists \sigma \in S_N, \mathfrak{g} \in E(3), \forall i, \vec{x}_i^{(\mathcal{G})} = \mathfrak{g} \cdot \vec{x}_{\sigma(i)}^{(\mathcal{H})}$. Here, all $\langle \sigma, \mathfrak{g} \rangle$ make a nonempty set $\mathbb{M}(\mathcal{G}, \mathcal{H})$.
- 2. **Topological Isomorphism:** The topological graphs associated with the point clouds are isomorphic, i.e., $\exists \langle \sigma, \mathfrak{g} \rangle \in \mathbb{M}(\mathcal{G}, \mathcal{H}), \forall i, \forall j, [\boldsymbol{A}_{ij}^{(\mathcal{G})}] = [\boldsymbol{A}_{\sigma(i)\sigma(j)}^{(\mathcal{H})}].$

Moreover, we denote the geometric isomorphism between G and H as $G \cong H$.

Definition 3.4 (Canonical Form of Geometric Graph). A canonical form of geometric graph is a graph-level scalar function $\Gamma: (\mathbb{R}^{N\times 3}, \mathbb{R}^{N\times N}) \to \mathbb{R}^H$, satisfy $\mathcal{G} \cong \mathcal{H} \iff \Gamma(\mathcal{G}) = \Gamma(\mathcal{H})$.

Construct Canonical Form

Algorithm 3: A canonical form of geometric graphs.

Data: A geometric graph \mathcal{G} , and ψ_{node} , ψ_{edge} , ψ_{graph} are DeepSet models.

Result: The canonical form $\Gamma \in \mathbb{R}^H$ of point clouds \mathcal{G} .

// $\mathcal{O}(N^4)$, traverse all permutations.

```
1 \mathbb{T} \leftarrow \varnothing;
```

2 for any ordered set containing four non-coplanar points $\vec{U}_{\alpha} \leftarrow \{\vec{u}_{\alpha_i}\}_{i=1}^4$ in \mathcal{G} do

5 end

// $\mathcal{O}(N+N^2)$, convert point sets and edge sets into scalar sets.

```
\mathbf{6} \quad \mathbb{D} \leftarrow \mathsf{set}([\boldsymbol{d}_i]_{i=1}^N), \, \mathbb{E} \leftarrow \mathsf{set}([\boldsymbol{d}_i, \boldsymbol{d}_j, \boldsymbol{e}_{ij}]_{\langle i,j \rangle \in \mathcal{E}});
```

// $\mathcal{O}(1)$, decentralization of the four reference points.

```
7 \vec{U}_{\alpha} \leftarrow (I_{4\times 4} - \frac{1}{4}\mathbf{1}_{4\times 4})\vec{U}_{\alpha};
```

// $\mathcal{O}(N+N^2)$, get the embedding based on current four points.

```
8 \Gamma_{\alpha} \leftarrow \text{concat}(\vec{U}_{\alpha}^{\top}\vec{U}_{\alpha}, \psi_{\text{node}}(\mathbb{D}), \psi_{\text{edge}}(\mathbb{E}));
```

9 | $\mathbb{T} \leftarrow \mathbb{T} \cup \{\Gamma_{\alpha}\};$

10 end

11
$$\Gamma \longleftarrow \psi_{\text{graph}}(\mathbb{T});$$

12 return Γ ;

A Faster Method

Using **virtual nodes** to bypass **quadratic traversal**, where the virtual nodes could be generated via models like FastEGNN.

Algorithm 4: A faster method to construct canonical form.

Data: A geometric graph \mathcal{G} , and ψ_{node} , ψ_{edge} are DeepSet models.

Result: The canonical form $\Gamma \in \mathbb{R}^H$ of point clouds \mathcal{G} .

// Get four non-coplanar reference points via generation.

1
$$\vec{V} \leftarrow \zeta(\mathcal{G})$$
;

2 for
$$ec{m{u}}_i \in ec{m{X}}^{(\mathcal{G})}$$
 do

//
$$\mathcal{O}(N)$$
, get a 4-channel scalar vector.

$$m{d}_i \leftarrow (\| ec{m{u}}_i - ec{m{v}}_1 \|, \| ec{m{u}}_i - ec{m{v}}_2 \|, \| ec{m{u}}_i - ec{m{v}}_3 \|, \| ec{m{u}}_i - ec{m{v}}_4 \|);$$

4 end

//
$$\mathcal{O}(N+N^2)$$
, convert point sets and edge sets into scalar sets.

$$\texttt{5} \ \mathbb{D} \leftarrow \mathtt{set}([\boldsymbol{d}_i]_{i=1}^N), \ \mathbb{E} \leftarrow \mathtt{set}([\boldsymbol{d}_i, \boldsymbol{d}_j, \boldsymbol{e}_{ij}]_{\langle i,j \rangle \in \mathcal{E}});$$

//
$$\mathcal{O}(1)$$
, decentralization of the four reference points.

6
$$ec{m{V}} \leftarrow (m{I}_{4 imes4} - rac{1}{4} m{1}_{4 imes4}) ec{m{V}};$$

//
$$\mathcal{O}(N+N^2)$$
, get the embedding based on current four points.

7
$$\Gamma \leftarrow \text{concat}(\vec{\boldsymbol{V}}^{\top}\vec{\boldsymbol{V}}, \psi_{\text{node}}(\mathbb{D}), \psi_{\text{edge}}(\mathbb{E}));$$

8 return
$$\Gamma$$
;

Expressive Experiments

Expressive Experiments of GWL-test and IASR test, together with the ability to determine chirality.

Table 1: *The Completeness Test*.

Table 2: The Chirality Test.

-	The Completeness Test						The Chirality Test			
	GNN Layer	2-body	3-body		# Color	# TP	Fig. 4(a)	Fig. 4(b)	Fig. 4(c)	
_	•	(Table. 3 in GWL)	(Fig. 2(b) in IASR)		Ø		50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	
	SchNet _{2-body}	50.0 ± 0.0	50.0 ± 0.0		\oplus		100.0 ± 0.0	100.0 ± 0.0	50.0 ± 0.0	
	EGNN _{2-body}	50.0 ± 0.0	50.0 ± 0.0	sic	\otimes		100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	
	GVP-GNN _{3-body}	100.0 ± 0.0	50.0 ± 0.0	Basic	Ø	\checkmark	75.0 ± 15.0	95.0 ± 15.0	100.0 ± 0.0	
	TFN _{2-body}	50.0 ± 0.0	50.0 ± 0.0		\oplus	\checkmark	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	
	$MACE_{3-body}$	100.0 ± 0.0	50.0 ± 0.0		\otimes	\checkmark	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	
	$MACE_{4-body}$	100.0 ± 0.0	100.0 ± 0.0		Ø		50.0 ± 0.0	50.0 ± 0.0	50.0 ± 0.0	
-	Basic _{cpl}	100.0 ± 0.0	100.0 ± 0.0		$\stackrel{\thicksim}{\oplus}$		100.0 ± 0.0	100.0 ± 0.0	50.0 ± 0.0	
	SchNet _{cpl}	100.0 ± 0.0	100.0 ± 0.0	Z	\otimes		100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	
	EGNN _{cpl}	100.0 ± 0.0	100.0 ± 0.0	EGNN	Ø	\checkmark	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	
	GVP-GNN _{cpl}	100.0 ± 0.0	100.0 ± 0.0	Щ	\oplus	\checkmark	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	
	TFN _{cpl}	100.0 ± 0.0	100.0 ± 0.0		\otimes	\checkmark	100.0 ± 0.0	100.0 ± 0.0	100.0 ± 0.0	

Synthetic Dataset

A dataset with graph-level target (Tetrahedron Center Prediction) & A dataset with node-level target (5-body).

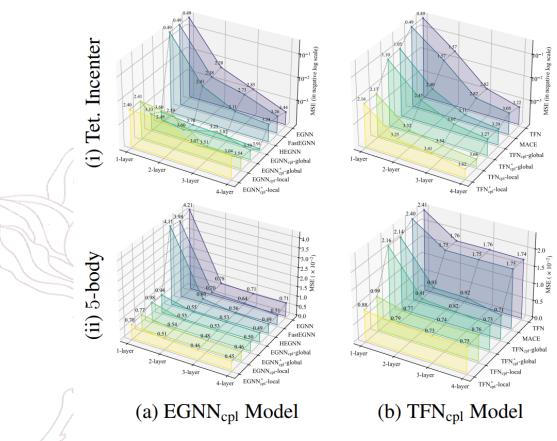


Figure 3: Visualization of MSE loss.

Table 4: MSE loss on 5-body system.

	MSE Loss on 5-body system $(\times 10^{-2})$							
	1-layer	2-layer	3-layer	4-layer				
EGNN	4.214	0.780	0.710	0.712				
FastEGNN	3.983	0.705	0.640	0.509				
HEGNN	4.114	0.801	0.561	0.489				
TFN	2.411	1.758	1.758	1.739				
MACE	2.403	1.754	1.746	1.746				
Equiformer	0.805	0.682	<u>0.465</u>	0.657				
EGNN _{cpl} -global	0.943	0.546	0.530	0.492				
EGNN* global	0.985	0.554	0.533	0.498				
EGNN _{cpl} -local	0.768	0.537	0.481	0.458				
EGNN* local	0.703	0.513	0.455	0.450				
TFN _{cpl} -global	2.144	0.934	0.916	0.708				
TFN _{cpl} -global	2.163	0.910	0.825	0.734				
TFN _{cpl} -local	0.988	0.766	0.738	0.761				
TFN _{cpl} -local	0.883	0.792	0.734	0.746				

Large-scale & Real-world Dataset

Table 5: 100-body dataset.

Table 6: Prediction error ($\times 10^{-2}$) on MD17 dataset (3 runs).

								`		
	MSE Loss ($\times 10^{-2}$)		Aspirin	Benzene	Ethanol	Malonal.	Naph.	Salicylic	Toluene	Uracil
EGNN	1.36	EGNN	14.41±0.15	62.40±0.53	4.64±0.01	13.64±0.01	$0.47_{\pm 0.02}$	1.02 ± 0.02	11.78±0.07	0.64±0.01
FastEGNN	1.10	FastEGNN	9.81 ± 0.11	$60.84 \scriptstyle{\pm 0.14}$	$4.65{\scriptstyle\pm0.00}$	12.82 ± 0.02	$0.38 \scriptstyle{\pm 0.00}$	1.05 ± 0.08	$10.88 \scriptstyle{\pm 0.08}$	$0.56 \scriptstyle{\pm 0.01}$
$TFN_{l\leq 2}$	3.77	$TFN_{l < 2}$	12.37 ± 0.18	58.48 ± 1.98	$4.81{\scriptstyle\pm0.04}$	13.62 ± 0.08	$0.49{\scriptstyle\pm0.01}$	1.03 ± 0.02	$10.89{\scriptstyle\pm0.01}$	$0.84 \scriptstyle{\pm 0.02}$
$MAC\overline{E}_{l\leq 2}$	3.83	$MAC\overline{E}_{l<2}$	10.43 ± 0.44	59.71 ± 2.21	$4.83{\scriptstyle\pm0.03}$	$13.78 \scriptstyle{\pm 0.04}$	$0.44{\scriptstyle\pm0.02}$	$0.94 \scriptstyle{\pm 0.01}$	10.20 ± 0.11	$0.74 \scriptstyle{\pm 0.01}$
Equiformer $_{l\leq 2}$	0.90	Equiformer $_{l\leq 2}$	$9.84{\scriptstyle\pm0.10}$	$33.28 \scriptstyle{\pm 0.15}$	$4.69{\scriptstyle\pm0.03}$	$13.06{\scriptstyle\pm0.04}$	$\underline{0.34}$ ± 0.01	$0.86 \scriptstyle{\pm 0.01}$	9.50 ± 0.09	$0.57 \scriptstyle{\pm 0.01}$
$\overline{\text{HEGNN}_{l < 1}}$	1.13	$\overline{\text{HEGNN}_{l < 1}}$	10.32±0.58	62.53±7.62	4.63±0.01	12.85±0.01	0.38±0.01	$0.90_{\pm 0.05}$	10.56±0.10	0.56 ± 0.02
$\text{HEGNN}_{l\leq 2}$	0.97	$\operatorname{HEGNN}_{l\leq 2}^-$	10.04 ± 0.45	61.80 ± 5.92	4.63 ± 0.01	12.85 ± 0.01	$0.39{\scriptstyle\pm0.01}$	0.91 ± 0.06	$10.56 \scriptstyle{\pm 0.05}$	$0.55{\scriptstyle\pm0.01}$
$\text{HEGNN}_{l < 3}$	0.94	$\operatorname{HEGNN}_{l\leq 3}^-$	10.20 ± 0.23	62.82 ± 4.25	4.63 ± 0.01	12.85 ± 0.02	$0.37 \scriptstyle{\pm 0.01}$	0.94 ± 0.10	$10.55{\scriptstyle\pm0.16}$	0.52 ± 0.01
$\text{HEGNN}_{l\leq 6}$	0.86	$\mathrm{HEGNN}_{l\leq 6}^{-}$	$9.94{\scriptstyle\pm0.07}$	$59.93{\scriptstyle\pm5.21}$	$4.62 \scriptstyle{\pm 0.01}$	$12.85{\scriptstyle\pm0.01}$	$0.37 \scriptstyle{\pm 0.02}$	$0.88{\scriptstyle\pm0.02}$	$10.56 {\scriptstyle \pm 0.33}$	$0.54 \scriptstyle{\pm 0.01}$
EGNN _{cpl} -global	0.98	EGNN _{cpl} -global	9.60±0.09	58.24±1.40	4.64±0.01	12.85±0.01	$0.39_{\pm 0.01}$	0.95 ± 0.05	10.37±0.16	0.56 ± 0.02
EGNN _{cpl} -local	0.73	EGNN _{cpl} -local	9.52 ± 0.42	44.90 ± 1.53	4.62 ± 0.00	12.80 ± 0.02	$0.36 \scriptstyle{\pm 0.02}$	$0.94{\scriptstyle\pm0.05}$	10.21 ± 0.06	$0.57 \scriptstyle{\pm 0.00}$
$TFN_{cpl}\text{-}global_{l<2}$	1.78	$TFN_{cpl}\text{-}global_{l<2}$	$\overline{9.49}_{\pm 0.04}$	$\overline{58.24}_{\pm 0.42}$	4.63 ± 0.00	12.82 ± 0.00	0.33 ± 0.00	0.80 ± 0.00	10.24 ± 0.02	0.53 ± 0.00
$TFN_{cpl}-local_{l\leq 2}$	1.73	$TFN^{T}_{cpl}-local_{l\leq 2}$	9.52 ± 0.07	48.77 ± 6.51	4.64±0.00	12.83 ± 0.02	0.34 ± 0.00	$\underline{0.81} \pm 0.01$	$10.95{\scriptstyle\pm0.01}$	0.53 ± 0.00

Table 7: Results on Water-3D-mini.

The same of									
_		MSE Loss on Water-3D-mini $(\times 10^{-4})$							
		1-layer	2-layer	3-layer	4-layer				
_	EGNN	4.904	4.323	3.649	3.338				
-1	FastEGNN	4.885	4.332	3.782	3.259				
	HEGNN	4.885	4.138	3.519	3.287				
	EGNN _{cpl} -global	4.368	3.711	3.294	3.248				
	EGNN _{cpl} -local	3.611	3.320	2.803	2.495				

- Large-scale Dataset: 100-body, Water-3D-mini (>8,000 nodes)
- ➤ Real-world Dataset: MD-17, Water-3D-mini

Reference

- [1] Joshi C K, Bodnar C, Mathis S V, et al. On the expressive power of geometric graph neural networks[C]//International conference on machine learning. PMLR, 2023: 15330-15355.
- [2] Drautz R. Atomic cluster expansion for accurate and transferable interatomic potentials[J]. Physical Review B, 2019, 99(1): 014104.
- [3] Brandstetter J, Hesselink R, van der Pol E, et al. Geometric and physical quantities improve e (3) equivariant message passing[J]. arXiv preprint arXiv:2110.02905, 2021.
- [4] Cen J, Li A, Lin N, et al. Are high-degree representations really unnecessary in equivariant graph neural networks?[J]. Advances in Neural Information Processing Systems, 2024, 37: 26238-26266.

