# TIGHT BOUNDS ON THE DISTORTION OF RANDOMIZED AND DETERMINISTIC DISTRIBUTED VOTING

MohammadAli Abam

Sharif University of Technology

**Davoud Kareshki** 

Sharif University of Technology

Marzieh Nilipour

Sharif University of Technology

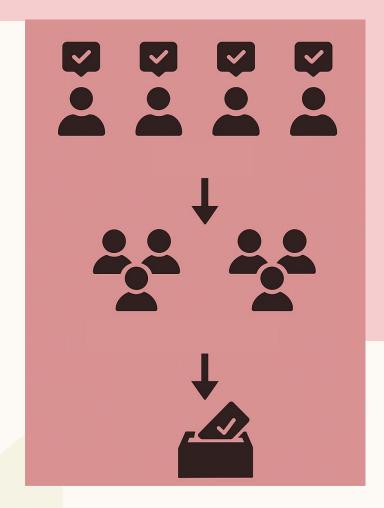
MohammadHossein Paydar

Sharif University of Technology

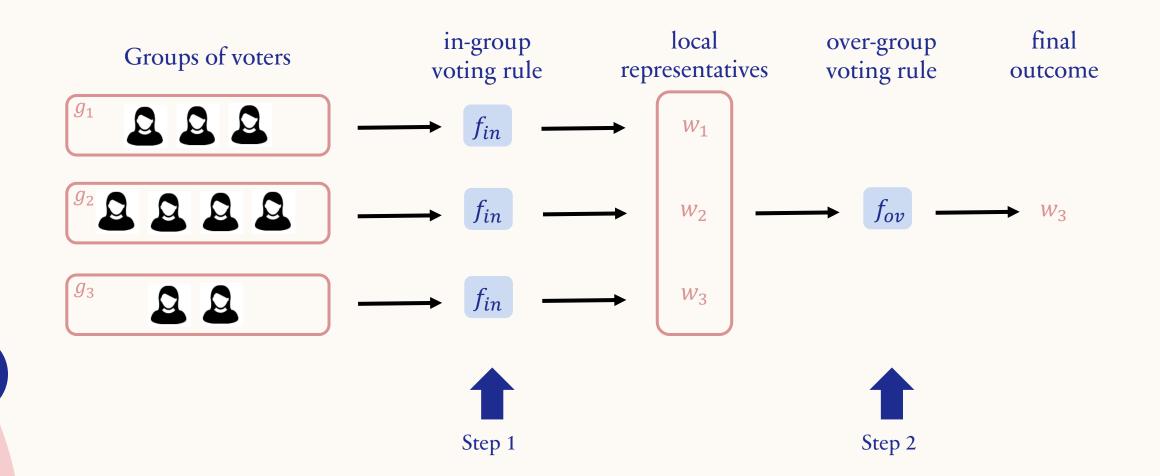
Masoud Seddighin

Tehran Institute for Advanced Studies (TeIAS)

**NEURIPS 2025** 


### **VOTING**

• Aggregating individual preferences over a set of candidates into a collective decision.




#### **DISTRIBUTED VOTING**

- Voters are partitioned into *k* disjoint groups, each selecting a local representative, and a final winner is chosen from them.
- Real-world application: the U.S. presidential elections.



# AN ILLUSTRATION OF DISTRIBUTED VOTING



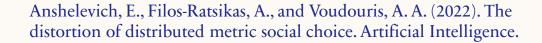
# PROBLEM FORMULATION IN METRIC SPACE

A distributed voting mechanism  $\mathcal{M} = (f_{in}, f_{ov})$ 

- $f_{in}$ : in-group voting rule
- $f_{ov}$ : over-group voting rule

#### Cost objectives:

- Average of averages (avg\_avg)
- Average of maxima (avg \_max)
- Maximum of averages (max\_avg)
- Maximum of maxima (max \_max)


#### **DISTORTION**

- A well-established benchmark to quantify outcome of the mechanism  $\mathcal{M}$ .
- The ratio of the winner's cost to the optimal candidate's cost in the worst case.
- w: final winner of  $\mathcal{M}$
- For any candidate *c*, we define

$$distortion(\mathcal{M}) = max \frac{cost(w)}{min cost(c)}$$

# PREVIOUS RESULTS (DETERMINISTIC)

| Cost       | <b>Metric Distortion</b> |
|------------|--------------------------|
| avg_avg    | [7, 11]                  |
| avg_max    | $[2+\sqrt{5},11]$        |
| $max\_avg$ | $[2+\sqrt{5},5]$         |
| max_max    | [3, 5]                   |



## **OUR RESULTS (DETERMINISTIC)**

det - det mechanism  $\mathcal{M} = (f_{in}, f_{ov})$ 

•  $f_{in}, f_{ov}$ : deterministic

| Cost       | <b>Metric Distortion</b> |
|------------|--------------------------|
| avg_max    | $[2+\sqrt{5},7]$         |
| $max\_avg$ | 5                        |
| max_max    | 3                        |

# **OUR RESULTS (RANDOMIZED)**

rand - det mechanism  $\mathcal{M} = (f_{in}, f_{ov})$ 

•  $f_{in}$ : deterministic

•  $f_{ov}$ : randomized

• k: # of groups

| Cost       | <b>Metric Distortion</b> |
|------------|--------------------------|
| avg_avg    | $5 - \frac{2}{k}$        |
| avg_max    | 3                        |
| $max\_avg$ | 5                        |
| max_max    | 3                        |

## **OUR RESULTS (RANDOMIZED)**

rand - rand mechanism  $\mathcal{M} = (f_{in}, f_{ov})$ 

•  $f_{in}$ ,  $f_{ov}$ : randomized

•  $n^*$ : the largest group size

| Cost       | <b>Metric Distortion</b>           |
|------------|------------------------------------|
| avg_avg*   | $[3-\frac{2}{n},3-\frac{2}{kn^*}]$ |
| avg_max    | $[3 - \frac{2}{n}, 3]$             |
| $max\_avg$ | 3                                  |
| $max\_max$ | 3                                  |

<sup>\*</sup>In the symmetric case, the bound is tight.

# **THANK YOU**

