

Computational Budget Should Be Considered in Data Selection

Weilin Wan¹, Weizhong Zhang², Cheng Jin¹

1 College of Computer Science and Artificial Intelligence, Fudan University; 2 School of Data Science, Fudan University

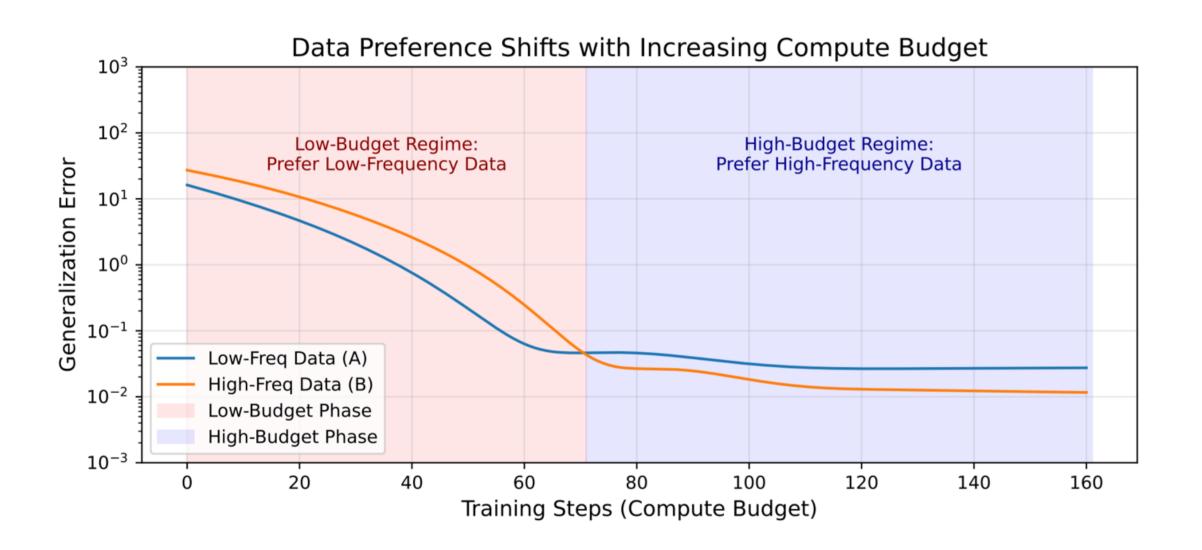
Budgets Shape Data

- We reveal that compute budget drives data choice.
- Prior selectors ignore budget, so no method dominates across settings; even random can win.
- We elevate budget to a **first-order design variable**, aligning *quantity*, *quality*, and *distribution* with available FLOPs.

Spectral Bias Example

Our synthetic study reveals how compute budget shapes data preference:

- Low budget favors low-frequency data.
- High budget favors high-frequency richness.
- This aligns with spectral bias, demanding **budget-aware selection** that adapts as *C* grows, enabling strategic compute usage.



Bilevel Formulation

We formalize compute-constrained data selection as a bilevel optimization problem:

Upper Level:

$$\min_{m{m}} \mathcal{L}_{\mathrm{val}}(m{ heta}_C(m{m}))$$
 s.t. $m{ heta}_C(m{m}) = \mathsf{Train}(m{m},C)$

Select subset m to minimize validation loss \mathcal{L}_{val} .

Lower Level:

$$\boldsymbol{\theta}_{C}(\boldsymbol{m}) = \mathsf{Train}(\boldsymbol{m}, C)$$

Train model parameters $\theta_C(m)$ on subset m with compute budget C.

• Key Difference: Unlike classical bilevel problems solved to convergence, we explicitly constrain training to C steps.

Challenges in Bilevel Optimization

Solving the bilevel problem presents significant challenges:

- Non-Convergence of Inner Problem: Due to the budget constraint, the inner-level training is *not guaranteed to converge*. This invalidates the use of implicit gradient methods.
- High Cost of Policy Gradients: Infeasible implicit gradients necessitate policy gradients, but their reliance on iterative inner-problem training incurs a prohibitively high computational cost.

Cracking Bilevel Barriers

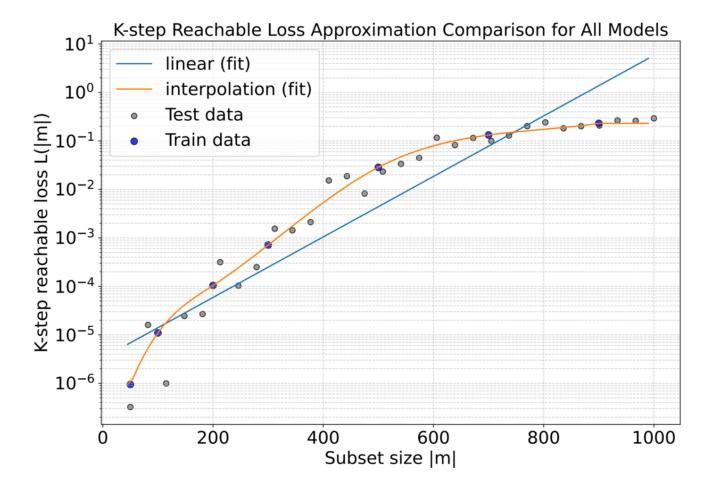
We reformulate it as a single-level problem using a penalty-based relaxation:

$$\min_{\theta,s} \mathcal{L}_{\text{penalty}}^{\alpha}(\theta,s) \triangleq \mathbb{E}_{p(m|s)} \Big[\mathcal{L}_{\text{val}}(\theta) + \alpha \big(\mathcal{L}_{\text{trn}}(\theta,m) - \mathcal{L}_{\text{trn}}(u,m) \big)^2 \Big]$$

where $u = \text{Train}(\theta_0, m; K)$ and $K = \frac{C}{|m|}$.

- Challenge with $\mathcal{L}_{trn}(u, m)$: Obtaining $\mathcal{L}_{trn}(u, m)$ in the penalty term remains challenging. It is computationally infeasible to retrain u from scratch for every update of m.
- Loss Predictor Approximation: To address this, we approximate $\mathcal{L}_{trn}(u,m)$ with a loss predictor l(|m|), which estimates the training loss based on the subset size. This yields our final objective:

$$\mathcal{L}_{\mathsf{CADS}}^{\alpha}(\theta, s) = \mathbb{E}_{p(m|s)} \Big[\mathcal{L}_{\mathrm{val}}(\theta) + \alpha \big(\mathcal{L}_{\mathrm{trn}}(\theta, m) - l(|m|) \big)^2 \Big]$$



Sampling Points (K)	Mean Square Error
4	0.057668
5	0.016326
6	0.018594
7	0.020031
8	0.017905

MSE of the loss estimator with respect to the number of sampling points (K).

Two Granularities, One Goal

- CADS-E: example-level Bernoulli selection for fine-grained control.
- CADS-S: source-level truncated-Gaussian ratios with annealed variance, scaling to heterogeneous corpora.

Both variants keep **budget constraints** central to what and how much we train.

Significant Improvements

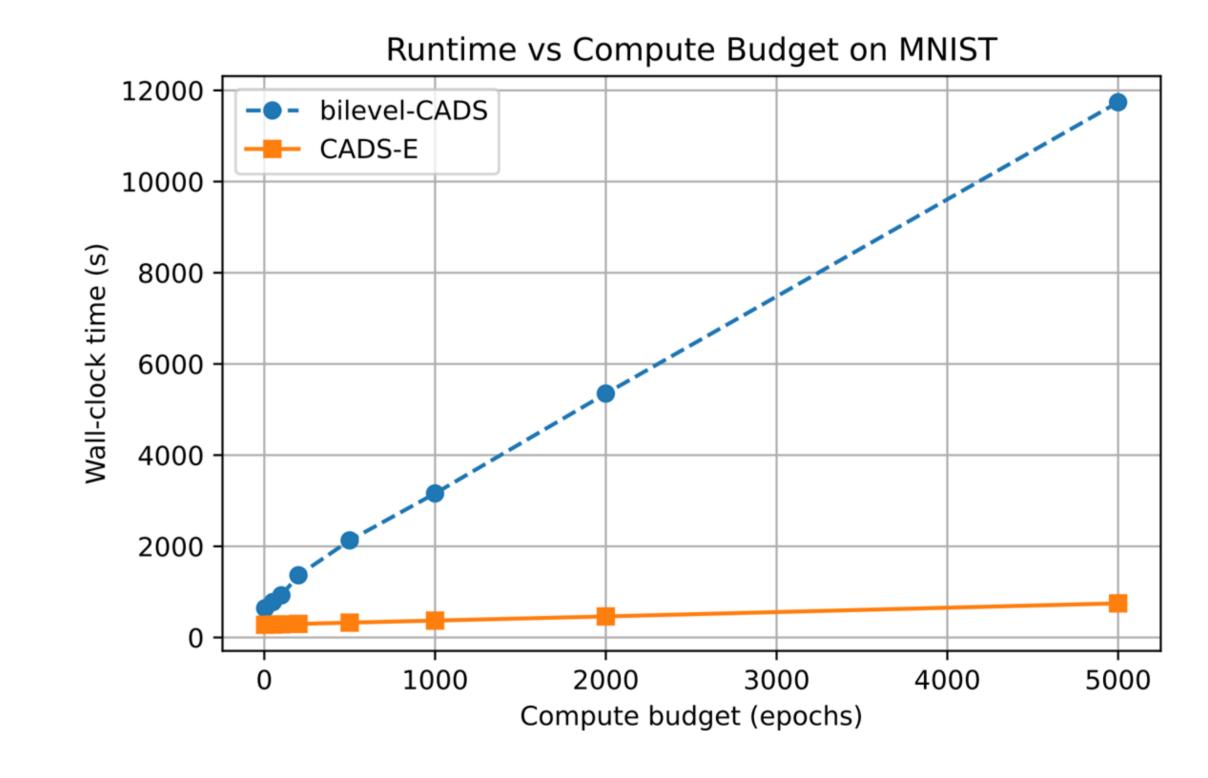
CADS achieves significant performance improvements across vision and language tasks:

- Significant Accuracy Gains: Achieves accuracy gains up to 14.42%.
- Substantial Speedups Achieved: Delivers substantial speedups of $3-20\times$.
- Performance Scales with Budget: Performance gains increase with budget, validating the compute-coupled design.
- Effective Across Diverse Tasks: Demonstrated effectiveness on MNIST, CIFAR-10, DomainNet, and instruction tuning.

Efficient Computation

CADS achieves efficient computation through the following techniques:

- Hessian-Free Operation: Avoids the use of Hessians.
- Low Overhead: Total overhead (5/A + 2 γ) C; with A=5, cost $\approx 2\gamma$ C.



Limitations and Future Directions

This work highlights several limitations and potential avenues for future research:

- Algorithm Complexity: The algorithm's computational complexity remains relatively high, necessitating further optimization.
- Loss Predictor Dependence: Performance relies on the accuracy of the loss predictor, which is sensitive to data distribution characteristics.
- Limited Scope of Budget Consideration: The current study primarily focuses on compute budget. Future work should explore the impact of parameter size, model architecture, and other resource constraints.