

FADRM: Fast and Accurate Data Residual Matching for Dataset Distillation

Jiacheng Cui *, Xinyue Bi *, Yaxin Luo, Xiaohan Zhao, Jiacheng Liu, Zhiqiang Shen †

*: Equal Contribution; †: Corresponding Author

Problem Statement

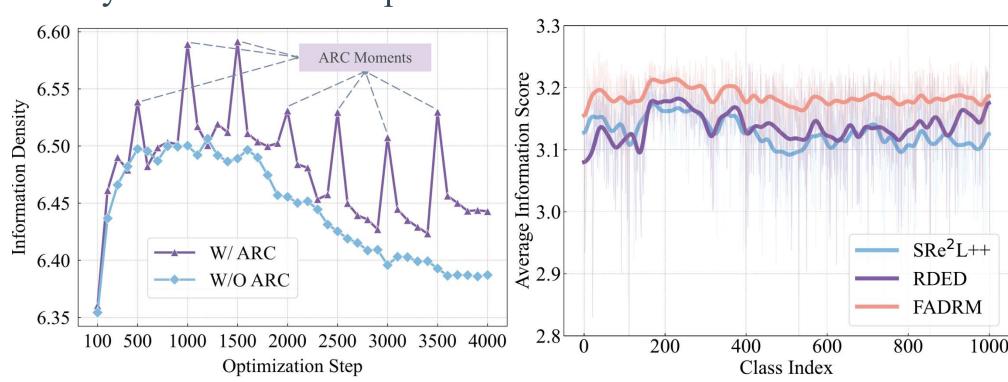
Dataset Distillation (DD) aims to synthesize a compact dataset C that allows a model trained on it to perform comparably to one trained on the full dataset O. The objective is to *minimize the performance gap* between the two models:

$$\underset{C,|C|}{\operatorname{argmin}} \sup_{(x,y)\sim\mathcal{O}} |L(f_{\theta_{\mathcal{O}}}(x),y) - L(f_{\theta_{\mathcal{C}}}(x),y)|$$

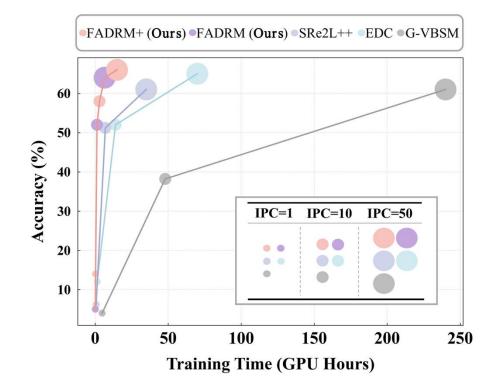
The key challenge is to *preserve essential information* and *generalization ability* while drastically reducing data size and computational cost.

Motivation

1) *Information Vanishing:* As optimization progresses, information density first increases but later declines due to local feature loss, causing information vanishing that reduces image fidelity and downstream performance.



2) *High Computational Overhead:* Large-scale data synthesis demands high computation, with EDC taking ~70 hours for a 50-IPC dataset, limiting large-scale or repeated experiments.



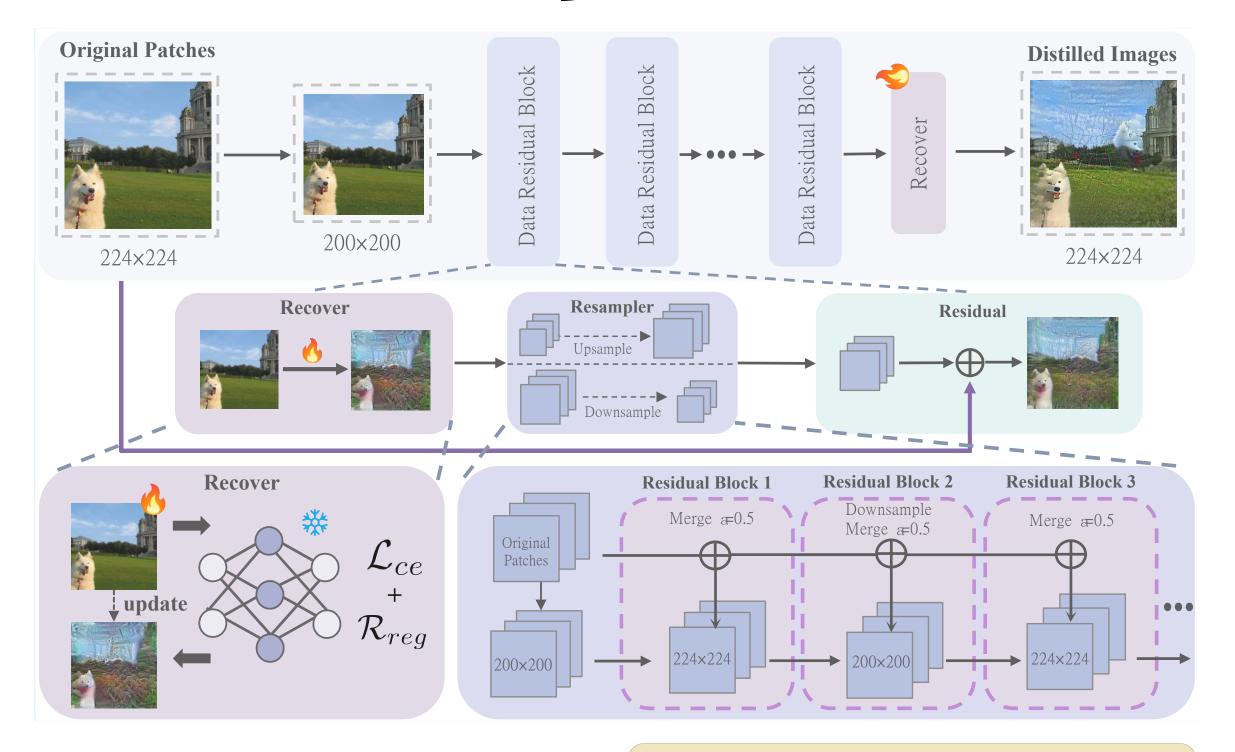
Method	Time Cost (s)	Peak Memory (GB)
SRe ² L++ [6]	2.52	5.3
FADRM	0.47	2.9
G-VBSM [30]	17.28	21.4
CV-DD [6]	8.20	23.4
EDC [31]	4.99	17.9
FADRM+	1.09	11.0

Methodology

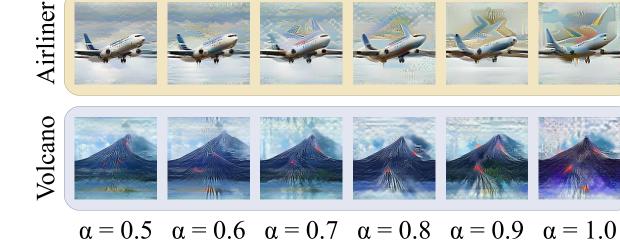
Our method is based on three components:

- 1) Adjustable Residual Connection mitigating Information Vanishing.
- 2) Muti-resolution Optimization
- 3) Mixed-Precision Training

improve generation efficiency.



In ARC, a large merge ratio favors optimized patches; a small one favors original patches.



Experimental Results

			ResNet18 ResNet50					ResNet101								
Dataset	IPC (Ratio)	RDED	EDC	CV-DD	FADRM	FADRM+	RDED	EDC	CV-DD	FADRM	FADRM+	RDED	EDC	CV-DD	FADRM	FADRM-
CIFAR-100	1 (0.2%)	17.1	39.7	28.3	31.8	40.6	10.9	36.1	28.7	27.3	37.4	11.2	32.3	29.0	29.2	40.1
	10 (2.0%)	56.9	63.7	62.7	67.4	67.9	41.6	62.1	61.5	66.5	67.4	54.1	61.7	63.8	68.3	68.9
	50 (10.0%)	66.8	68.6	67.1	71.0	71.3	64.0	69.4	68.2	71.5	72. 1	67.9	68.5	67.6	71.9	72.1
	Whole Dataset	78.9			79.9				79.5							
Tiny-ImageNet	1 (0.2%)	11.8	39.2	30.6	28.6	40.4	8.2	35.9	25.1	28.4	39.4	9.6	40.6	28.0	27.9	41.9
	10 (2.0%)	41.9	51.2	47.8	48.9	52.8	38.4	50.2	43.8	47.3	53.7	22.9	51.6	47.4	47.8	53.6
	50 (10.0%)	58.2	57.2	54.1	56.4	58.7	45.6	58.8	54.7	57.0	60.3	41.2	58.6	54.1	57.2	60.8
	Whole Dataset	68.9				71.5				70.6						
ImageNette	1 (0.1%)	35.8	-	36.2	36.2	39.2	27.0	-	27.6	31.1	31.9	25.1	-	25.3	26.3	29.3
	10 (1.0%)	61.4	-	64.1	64.8	69.0	55.0	-	61.4	64.1	68.1	54.0	-	61.0	61.9	63.7
	50 (5.2%)	80.4	-	81.6	83.6	84.6	81.8	-	82.0	84.1	85.4	75.0	-	80.0	80.3	82.3
	Whole Dataset	93.8				89.8				89.3						
ImageWoof	1 (0.1%)	20.8	-	21.4	21.0	22.8	17.8	-	19.1	19.5	19.9	19.6	-	19.9	20.0	21.8
	10 (1.1%)	38.5	-	49.3	44.5	57.3	35.2	-	47.8	44.9	54.1	31.3	-	42.6	40.4	51.4
	50 (5.3%)	68.5	-	71.9	72.3	72.6	67.0	-	71.2	71.0	71.7	59.1	-	69.9	70.3	70.6
	Whole Dataset	t 88.2				77.8				82.7						
ImageNet-1k	1 (0.1%)	6.6	12.8	9.2	9.0	14.7	8.0	13.3	10.0	12.2	16.2	5.9	12.2	7.0	6.8	14.1
	10 (0.8%)	42.0	48.6	46.0	48.4	50.9	49.7	54.1	51.3	54.5	57.5	48.3	51.7	51.7	54.8	58.1
	50 (3.9%)	56.5	58.0	59.5	60.1	61.2	62.0	64.3	63.9	65.4	66.9	61.2	64.9	62.7	66.0	67.0
	Whole Dataset	t 72.3				78.6				79.8						

Theoretical Guarantee

Theorem 2 (Proof in Appendix A.3.1). Let \mathcal{H} be a class of functions $h: \mathbb{R}^d \to \mathbb{R}$, and let h be Lipschitz-continuous with constant $L_h > 0$, and the loss function ℓ be Lipschitz-continuous with constant $L_l > 0$ and bounded within a finite range [0,B]. Consider: 1. Optimized perturbation added to the original data: $\tilde{\mathcal{C}}^{res} = \{\tilde{x}_i^{res}, \tilde{y}_i^{res}\}_{i=1}^n$. 2. residual injected dataset (FADRM): $\tilde{\mathcal{C}}_{FADRM} = \{\tilde{x}_i, \tilde{y}_i\}_{i=1}^n$. 3. patches selected from the original dataset: $\mathcal{O} = \{x_i, y_i\}_{i=1}^n$. 4. discrepancy $\Delta := \frac{1}{n} \sum_{i=1}^n \|\tilde{x}_i^{res} - x_i\|$. Let $h_{res} \in \mathcal{H}$ denote the hypothesis trained on $\tilde{\mathcal{C}}^{res}$, and $h_{FADRM} \in \mathcal{H}$ be trained on $\tilde{\mathcal{C}}_{FADRM}$. Define the corresponding empirical risks: $\hat{\mathcal{L}}_{res} := \frac{1}{n} \sum_{i=1}^n \ell(h_{res}(\tilde{x}_i^{res}), \tilde{y}_i^{res}), \quad \hat{\mathcal{L}}_{FADRM} := \frac{1}{n} \sum_{i=1}^n \ell(h_{FADRM}(\tilde{x}_i), \tilde{y}_i)$. Assume:

$$\mathfrak{R}_n(\mathcal{H}\circ\mathcal{O})<\mathfrak{R}_n(\mathcal{H}\circ ilde{\mathcal{C}}^{res})$$

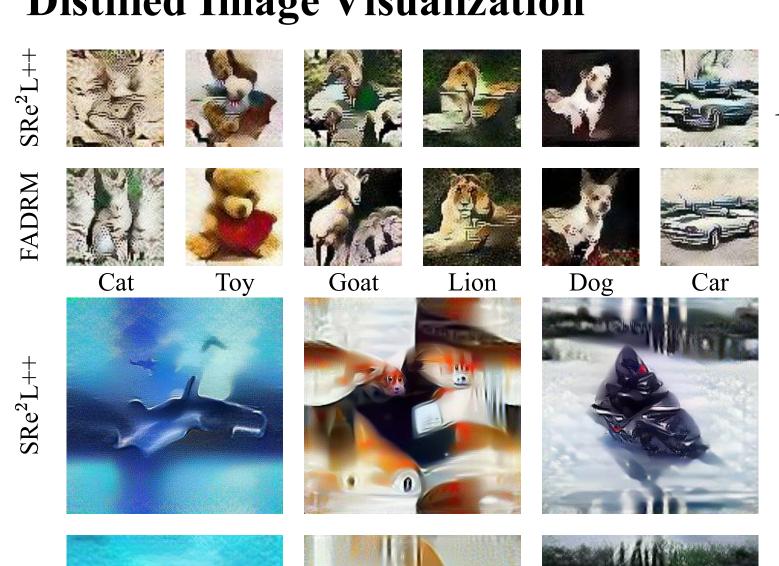
Then the generalization bound of $h_{\rm FADRM}$ is rigorously shown to be tighter than that of $h_{\rm res}$, i.e.,

 $\widehat{\mathcal{L}}_{\mathrm{FADRM}} + 2B \cdot \mathfrak{R}_n(\mathcal{H} \circ \widetilde{\mathcal{C}}_{\mathrm{FADRM}}) < \widehat{\mathcal{L}}_{\mathrm{res}} + 2B \cdot \mathfrak{R}_n(\mathcal{H} \circ \widetilde{\mathcal{C}}^{res}).$

Cross-Architecture Generalization Analysis

Model	#Params	RDED	EDC	CV-DD	FADRM+
ResNet18 [11]	11.7M	42.0	48.6	46.0	50.9
ResNet50 [11]	25.6M	49.7	54.1	51.3	57. 5
ResNet101 [11]	44.5M	48.3	51.7	51.7	58.1
EfficientNet-B0 [35]	39.6M	42.8	51.1	43.2	51.9
MobileNetV2 [28]	3.4M	34.4	45.0	39.0	45.5
ShuffleNetV2-0.5x [44]	1.4M	19.6	29.8	27.4	30.2
Swin-Tiny [22]	28.0M	29.2	38.3	_	39.1
Wide ResNet50-2 [11]	68.9M	50.0	_	53.9	59.1
DenseNet121 [13]	8.0M	49.4	_	50.9	55.4
DenseNet169 [13]	14.2M	50.9	_	53.6	58.5
DenseNet201 [13]	20.0M	49.0	_	54.8	59.7

Distilled Image Visualization



Golden Fish

FADRM

Shark

Snow Mobile