

WMCopier: Forging Invisible Watermarks on Arbitrary Images

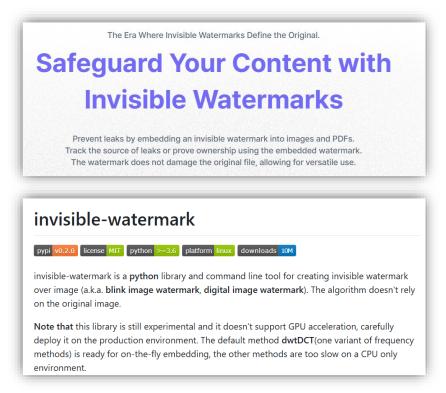
Ziping Dong¹, Chao Shuai¹ Zhongjie Ba^{1,2}*, Peng Cheng^{1,2}, Zhan Qin^{1,2}, Qinglong Wang^{1,2}, Kui Ren^{1,2}

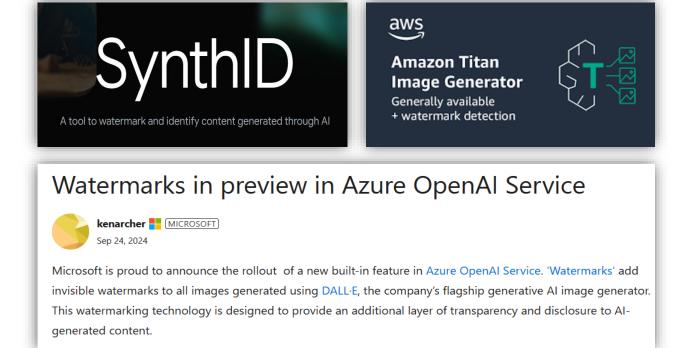
¹The State Key Laboratory of Blockchain and Data Security, Zhejiang University

²Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security

Background

Image Watermarking is becoming a key technique for copyright and AIGC Detection.



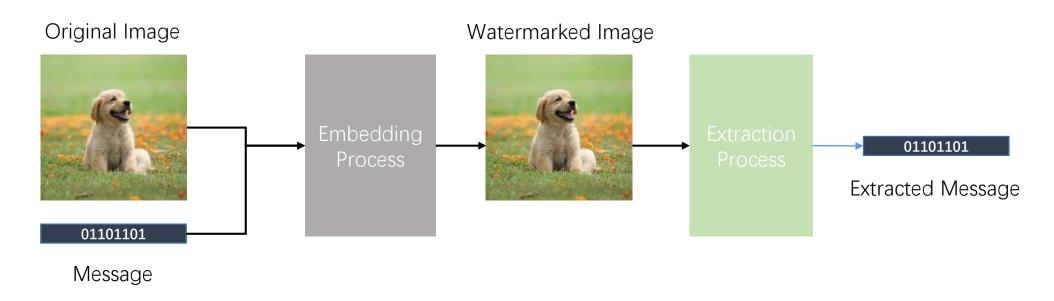


Copyright Protection

AIGC Detection

- [1] https://github.com/ShieldMnt/invisible-watermark
- [2] https://www.saforus.com
- [3] https://deepmind.google/science/synthid

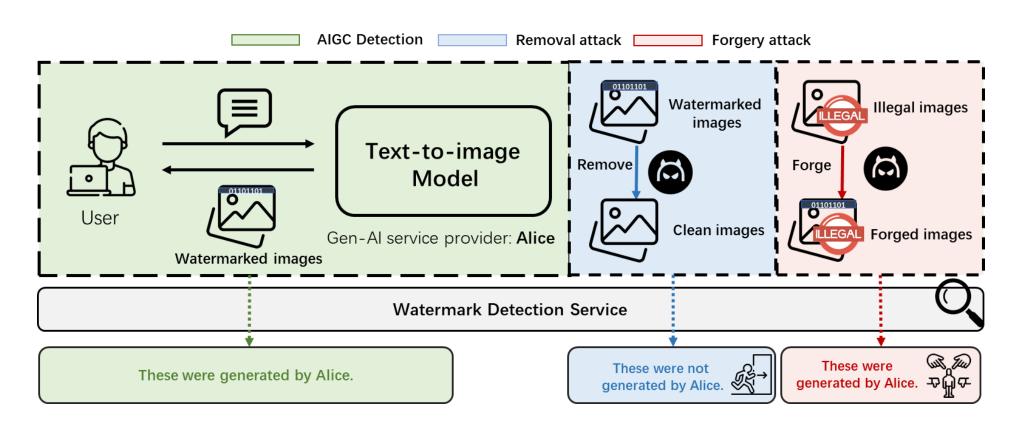
Background



Overview of image watermark embedding and extraction.

Background

Watermarking are vulnerable to adversarial attacks.

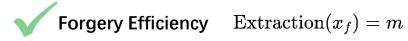


Threat Model

Attacker's Goal.

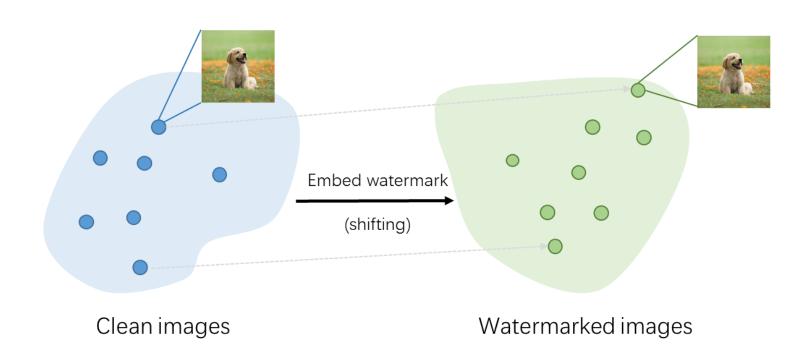
 x_f : forged image created by the attacker





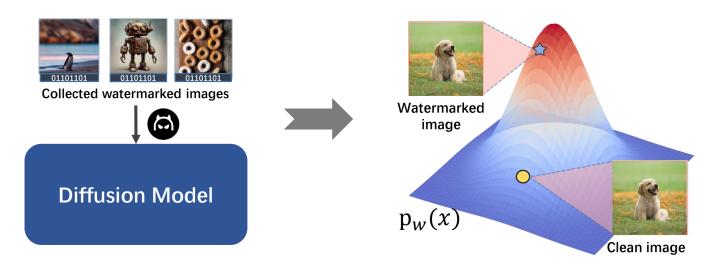
Attacker's Capability.

- Don't know any knowledge(parameters, message, scheme) of target watermarking scheme
- No access to embedding or detection(extraction) pipeline
- Can only collect watermarked images from the internet or by using GenAl service



Can we model the distribution of the watermarked images using a diffusion model?

Generative models (e.g., GANs, Diffusion Models, Language Models) can learn to generate watermarked content by training on watermarked data $^{[1-3]}$.



Watermark Estimation

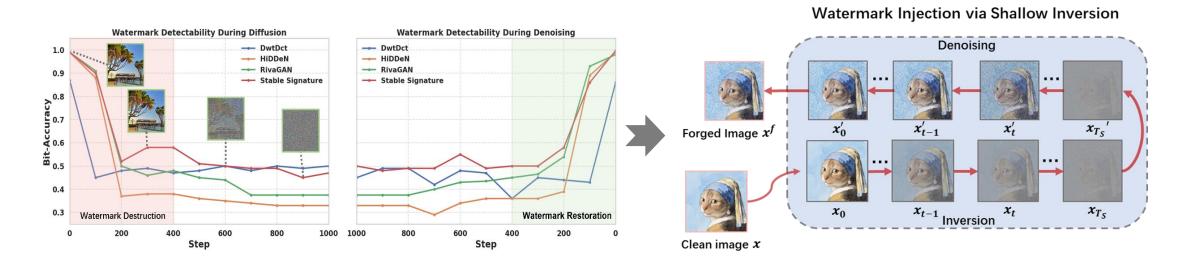
How to forge the watermark signal on a given clean image?

^[1] On the Learnability of Watermarks for Language Models

^[2] Artificial Fingerprinting for Generative Models: Rooting Deepfake Attribution in Training Data

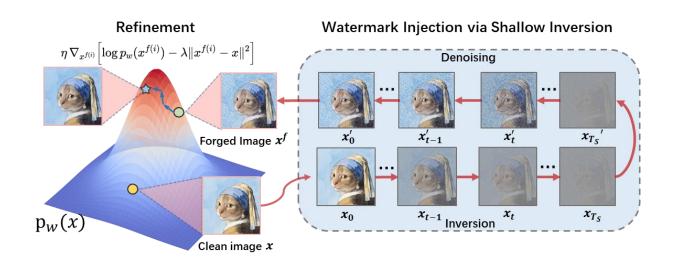
^[3] A Recipe for Watermarking Diffusion Models

We find that watermark restoration occurs in the **shallow steps** of denoising, where semantic content is not destroyed.



We perform a **shallow inversion** to map clean images to their **latent representations**, followed by a denoising process that injects the watermark signal utilizing the trained diffusion model.

To further improve visual quality and forgery efficiency, we propose a **refinement procedure** that jointly optimizes image quality and alignment with the target watermark distribution.



Score MSE
$$x_{f(i+1)} = x_{f(i)} + oxedsymbol{\eta}
abla x_{f(i)} \log p_w(x_{f(i)}) - oxedsymbol{\lambda} \|x_{f(i)} - x\|_i^2,$$
 $i \in \{0, 1, \dots, L\}$

For simplicity,

$$\nabla_{x^f} \log p_w(x^f) \approx \nabla_{x_{t_l}^f} \log p_w^{t_l}(x_{t_l}^f) \approx -\frac{1}{\sqrt{1 - \alpha_{t_l}}} \epsilon_\theta(x_{t_l}^f, t_l)$$

The log-likelihood constrains the samples to lie in regions of high probability under $p_w(x)$, while the MSE term ensures that the refined image remains similar to the clean image x.

Experiments

Attack Performance

			Black Box			No-Box			No-Box	
Attacks		Wang et al. [16]			Yang et al. [10]			Ours		
Watermark scheme	Dataset	PSNR↑	Forged Bit-acc†	FPR @10 ⁻⁶ ↑	PSNR↑	Forged Bit-acc.	FPR@10 ⁻⁶	↑ PSNR↑ I	Forged Bit-acc.	↑FPR @10 ⁻⁶ ↑
	MS-COCO	31.33	74.32%	57.20%	32.87	53.08%	0.50%	33.69	89.19%	60.20%
DWT-DCT	CelebAHQ	32.19	81.29%	50.70%	32.90	53.68%	0.10%	35.29	89.46%	53.20%
DW I-DC I	ImageNet	30.16	79.64%	55.10%	32.92	51.96%	0.20%	33.75	88.25%	55.80%
	Diffusiondb	31.87	78.22%	50.80%	32.90	51.59%	0.40%	33.84	85.17%	54.30%
TT 11 M	MS-COCO	31.02	80.56%	77.60%	29.68	63.12%	0.00%	31.74	99.34%	95.90%
	CelebAHQ	31.57	82.28%	80.20%	29.79	61.52%	0.00%	33.12	98.08%	92.50%
HiddeN	ImageNet	31.24	78.61%	83.90%	29.78	62.66%	0.00%	31.76	98.99%	94.30%
	Diffusiondb	30.74	79.99%	79.20%	29.68	63.36%	0.00%	31.46	98.83%	94.60%
	MS-COCO	32.94	93.26%	88.80%	29.12	50.80%	0.00%	34.07	95.74%	90.90%
RivaGAN	CelebAHQ	32.64	93.67%	93.80%	29.23	52.29%	0.00%	35.28	98.61%	96.00%
RIVAGAN	ImageNet	33.11	90.94%	71.40%	29.22	50.92%	0.00%	33.87	93.83%	77.10%
	Diffusiondb	33.31	89.69%	80.60%	29.12	48.70%	0.00%	34.50	90.43%	84.80%
	MS-COCO	28.87	91.68%	88.90%	30.77	52.67%	0.00%	31.29	98.04%	94.60%
Stable Signature	CelebAHQ	32.33	79.90%	90.10%	30.51	51.73%	0.00%	30.54	96.04%	100.00%
	ImageNet	29.59	85.77%	85.90%	30.75	51.59%	0.00%	31.33	97.03%	98.60%
	Diffusiondb	31.11	89.24%	92.10%	30.65	52.69%	0.00%	31.59	96.24%	96.60%
Average		31.50	84.32%	76.64%	30.62	54.52%	0.08%	32.94	94.58%	83.71%

Table 1: Comparison of our WMCopier with two baselines on four open-source watermarking methods. The cells highlighted in ___ indicate the highest values in each row for the corresponding metrics. Arrows indicate the desired direction of each metric (↑ for higher values being better).

Table 2: Performance comparison of baseline and WMCopier on Amazon Watermark.

File formats: .jpg, .png, maximum size 18ME

Figure 4: Comparison of forged bit accuracy distribution: Yang's method. vs. Ours.

Attack on open source watermark

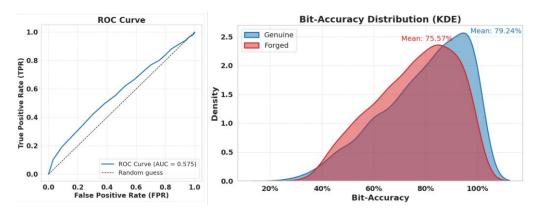
Attack on close source watermark

Experiments

Potential Defenses

Watermark scheme	Distortion	JPEG		Blur		Gaussian Noise		Brightness	
viace mark scheme	Dataset	Genuine	Forged	Genuine	Forged	Genuine	Forged	Genuine	Forged
DWT-DCT	MS-COCO	56.44%	53.00%	59.84%	56.56%	67.86%	66.90%	54.66%	58.36%
	CelebAHQ	55.42%	53.14%	63.12%	58.26%	64.84%	66.49%	53.89%	57.73%
	ImageNet	56.08%	52.31%	59.37%	54.39%	68.27%	67.60%	54.08%	57.37%
	Diffusiondb	58.16%	53.23%	62.12%	55.74%	66.90%	64.43%	54.73%	56.83%
HiddeN	MS-COCO	58.68%	58.06%	78.50%	71.95%	54.13%	49.55%	82.40%	78.99%
	CelebAHQ	57.05%	55.07%	79.83%	69.07%	48.94%	46.02%	83.63%	73.21%
	ImageNet	58.86%	57.83%	78.20%	71.34%	54.10%	49.57%	80.95%	77.40%
	Diffusiondb	58.57%	57.61%	79.69%	72.89%	54.41%	50.19%	81.53%	77.66%
RivaGAN	MS-COCO	99.44%	93.32%	99.60%	94.99%	85.71%	75.00%	84.51%	78.81%
	CelebAHQ	99.92%	97.22%	99.97%	98.23%	85.93%	74.83%	84.60%	79.53%
	ImageNet	98.95%	92.00%	99.28%	93.89%	84.95%	74.74%	82.77%	77.25%
	Diffusiondb	96.56%	84.85%	97.27%	86.96%	77.33%	66.27%	79.14%	71.65%
StableSignature	MS-COCO CelebAHQ ImageNet Diffusiondb	93.99%	89.48% 86.73% 87.73% 85.69%	86.91%	68.34% 65.42% 64.88% 65.45%	73.78%	67.14% 65.33% 61.79% 61.60%	92.30%	88.63% 86.86% 91.41% 87.45%

Table 3: Bit Accuracy of the genuine watermark and the forged watermark under various image distortions. The distortion parameters are: Gaussian Noise ($\sigma=0.05$), JPEG (quality=90), Blur (radius=1), and Brightness (factor=6). Cells with background indicate a degradation gap between 10% and 20%, and cells with background indicate a degradation gap greater than 20%.



Discrimination of Forged Watermarks by Robustness Gap

Although forged samples demonstrate poorer robustness against distortion, it is still difficult to distinguish forged from genuine watermarked images using this.

Experiments

Potential Defenses

We propose a **multi-message strategy** as a simple yet effective countermeasure. Instead of embedding a fixed watermark message, the system randomly selects one from a predefined message pool $m_1, m_2, m_3, \ldots, m_K$ for each image.

Table 4: Performance comparison across different K values.

	K=10				K=50		K=100		
Dataset	PSNR↑ I	Forged Bit-acc.↑	FPR @10 ⁻⁶ ↑	PSNR↑	Forged Bit-acc.↑	FPR@10 ⁻⁶	`PSNR↑	Forged Bit-acc.↑	FPR @10 ⁻⁶ ↑
MS-COCO	34.73	81.63%	34.00%	34.62	69.78%	0.00%	34.86	71.56%	0.00%
CelebAHQ	36.13	83.41%	44.00%	35.89	71.00%	0.00%	35.87	72.91%	0.00%
ImageNet	34.55	79.25%	25.00%	34.35	70.09%	0.00%	34.58	71.44%	0.00%
Diffusiondb	35.14	76.28%	17.00%	35.10	70.66%	0.00%	35.40	72.28%	0.00%

Table 5: Performance comparison across datasets with a larger size of D_{aux} for K=100.

Dataset	5000				20000		50000		
	PSNR ↑	Forged Bit-acc.↑	FPR @10 ⁻⁶	PSNR↑	Forged Bit-acc.↑	FPR @10 ⁻⁶ 1	PSNR↑	Forged Bit-acc.↑	FPR@10 ⁻⁶ ↑
MS-COCO	34.86	71.56%	0.00%	34.78	71.91%	0.00%	30.77	71.94%	0.00%
CelebA-HQ	35.87	72.91%	0.00%	34.15	72.97%	1.00%	27.99	72.72%	1.00%
ImageNet	34.58	71.44%	0.00%	34.57	72.56%	0.00%	30.47	72.19%	0.00%
DiffusionDB	35.40	72.28%	0.00%	34.99	72.34%	0.00%	31.15	72.06%	0.00%

Future work

The exploration of alternative architectures and training schemes to future work.

Create a UNet2DModel

Pretrained models in / Diffusers are easily created from their model class with the parameters you want. For example, to create a <u>UNet2DModel</u>:

```
>>> from diffusers import UNet2DModel
>>> model = UNet2DModel(
        sample_size=config.image_size, # the target image resolution
        in_channels=3, # the number of input channels, 3 for RGB images
        out_channels=3, # the number of output channels
        layers per block=2, # how many ResNet layers to use per UNet block
        block_out_channels=(128, 128, 256, 256, 512, 512), # the number of output channels for each UNex
        down_block_types=(
            "DownBlock2D", # a regular ResNet downsampling block
            "DownBlock2D"
            "DownBlock2D",
            "DownBlock2D"
            "AttnDownBlock2D", # a ResNet downsampling block with spatial self-attention
            "DownBlock2D",
        up_block_types=(
            "UpBlock2D", # a regular ResNet upsampling block
            "AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
```

Future watermark schemes and their deployment should consider robustness against both removal attacks and forgery attacks.

