How Patterns Dictate Learnability in Sequential Data

Mario Morawski^{1*} Anaïs Despres^{2*} Rémi Rehm²

¹Université Paris Dauphine–PSL ²Unaffiliated

November 5, 2025

Introduction

A substantial body of work studies generalization error bounds, often via Bayesian theory and Rademacher complexity. Yet, two critical questions remain:

- What is the minimal achievable risk for a predictor modeling sequential data?
- ② Can we distinguish whether poor performance stems from model limitations or from data unpredictability?

Our work aims to address these two questions by providing an information-theoretic framework to quantify the minimal achievable risk in sequential prediction.

Prior Work

- ForeCA: measures the uncertainty of the entropy of the spectral density.
- EvoRate: mutual information-based metric quantifying evolving patterns in sequential data.
- Prospective Learning: determines under what conditions learning under non-i.i.d. stochastic processes remains feasible.
- Mutual Information Estimators: k-NN, MINE, InfoNCE, CLUB, SMILE.
- Predictive Information & Universal Learning Curve: generalization of EvoRate & discrete derivative of EvoRate.
- Lowest Possible Error Rate: how to bound the gap between empirical and true risk? Previous approaches use Rademacher complexity.

Motivations

Limitations of existing metrics:

- EvoRate: focuses on how the metric evolves with window size, but its absolute values are hard to interpret and it cannot be linked to model performance or risk.
- ForeCA: suffers from high computational cost, making it impractical for deep learning or high-dimensional data. Can only detect cyclic patterns, failing to capture trends or more complex temporal behaviors.

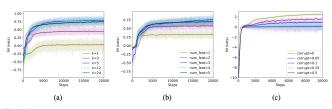


Figure 2: (a) k-order EVORATE estimation. (b) EVORATE estimation on a different number of features. (c) EVORATE estimation of the video prediction tasks with a different corruption rate.

Our Approach

We generalize EvoRate by introducing the predictive information I_{pred} .

$$\mathbf{I}_{\text{pred}}(k, k') = \int p(\mathbf{X}_{t-k+1}^{t+k'}) \ln \frac{p(\mathbf{X}_{t-k+1}^{t+k'})}{p(\mathbf{X}_{t-k+1}^{t})p(\mathbf{X}_{t+1}^{t+k'})} d\mathbf{X}. \tag{1}$$

We then relate \mathbf{I}_{pred} to the universal learning curve $\Lambda(k) = \ell(k) - \ell_0$ (with $\ell(k)$ the entropy rate of order k), which measures the reduction in uncertainty about the future when conditioning on k past observations.

$$\mathbf{I}_{\mathsf{pred}}(k+1,k') - \mathbf{I}_{\mathsf{pred}}(k,k') \longrightarrow \Lambda(k) \quad \mathsf{as} \quad k' \to \infty.$$
 (2)

 \mathbf{I}_{pred} quantifies how much information from the past can be used to predict the future.

Asymptotic Behavior of $\Lambda(k)$ for Markov Processes

For a Markov process of order m, dependencies are limited to the past m observations. This is naturally captured by the predictive information \mathbf{I}_{pred} .

Let \mathbf{X}_t^T be a Markov process of order m. For $k' \geq k \geq m$:

(i)
$$\mathbf{I}_{pred}(k, k') = \mathbb{E}_{\mathbf{X}_{t-m+1}^{t+m}} \left[\ln \frac{P(X_{t+1}^{t+m} \mid \mathbf{X}_{t-m+1}^{t})}{P(X_{t+1}^{t+m})} \right],$$
 (3)

(ii)
$$\forall k \geq m, \quad \Lambda(k) = 0.$$
 (4)

- For first-order Markov processes (m = 1), $\mathbf{I}_{pred}(k, k') = \text{EvoRate}(1)$ for all $k \ge 1$.
- $\Lambda(k)$ identifies the **true Markov order** by vanishing once $k \geq m$.

Link Between Learning Curve and Minimal Achievable Risk

We connect the predictive information \mathbf{I}_{pred} to model performance through the k^{th} -order forecasting risk:

$$\mathcal{R}^{k}(Q) = \mathcal{L}_{\text{mle}}^{k} = -\mathbb{E}_{P(X_{t+1}, \mathbf{X}_{t-k+1}^{t})} \ln Q(X_{t+1} \mid \mathbf{X}_{t-k+1}^{t}). \tag{5}$$

We then show that for any $k \in \mathbb{N}$ and any $Q \in \mathcal{H}_k$,

$$\mathcal{R}^{\infty}(Q^*) \leq \mathcal{R}^k(Q) - \Lambda(k).$$

This leads us to present an estimator of this minimal risk:

(i)
$$\hat{\mathcal{R}}^{\infty}(Q^*) = \min_{1 \le k \le M} \{\hat{\mathcal{R}}^k(Q_k) - \Lambda(k)\},$$
 (6)

(ii)
$$k^* = \arg\min_{1 \le k \le M} \{ \hat{\mathcal{R}}^k(Q_k) - \Lambda(k) \}. \tag{7}$$

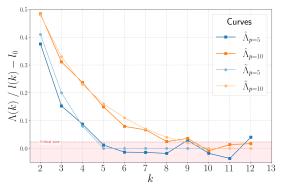
with $\mathcal{R}^{\infty}(Q^*)$ is the minimal risk achievable by the optimal predictor $Q^* = P(X_{t+1} \mid \mathbf{X}_{past})$.

Experimental Learning Curve $\Lambda(k)$

We simulate a stationary vector autoregressive process $\{X_t\}_{t=0}^{N-1} \subset \mathbb{R}^3$ of order $p \in \{5, 10\}$:

$$X_t = \frac{\rho}{\rho} \sum_{j=t-\rho}^{t-1} X_j + \sqrt{1-\rho^2} \,\epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, I_3), \tag{8}$$

with initial states $X_0, \ldots, X_{p-1} \sim \mathcal{N}(0, I_3)$ and $\rho \in (0, 1)$ controlling temporal dependence.



Learning curves $\Lambda(k)$ for AR processes with p=5 and p=10.

Estimating $\mathcal{R}^{\infty}(\mathit{Q}^{*})$ for Ising Spin Sequences

Setup. We study binary spin sequences $\mathbf{X}_t^T = \{X_u\}_{u=t}^T$ with $X_i \in \{-1, +1\}$, generated as:

$$P(X_i = +1 \mid X_{i-1}, J) = \frac{\exp(JX_{i-1})}{\exp(JX_{i-1}) + \exp(-JX_{i-1})},$$
(9)

where $J \sim \mathcal{N}(0,1)$ is resampled every M steps.

This creates a *blockwise-random Ising process* — piecewise-stationary with block length $M \in \{10^4, 10^5, 10^6, 10^7\}$.

We train **MLP** and **LSTM** models to predict X_{t+1} from k past values $(1 \le k \le 19)$, using cross-entropy loss and dim $\Theta = 1$.

Μ	EvoRate(10)	$\hat{\mathcal{R}}^{\infty}_{LSTM}(\mathit{Q}^*)$	$\hat{\mathcal{R}}_{MLP}^{\infty}(\mathit{Q}^{*})$
10^{4}	0.28	0.37	0.37
10^{5}	0.29	0.37	0.37
10^{6}	0.33	0.36	0.34
10^{7}	0.48	0.07	0.09

Insights from Ising Spin Sequence Experiments

- Data complexity decreases with block size M: For $M = 10^7$, the coupling J is fixed and the process reduces to a first-order Markov chain.
- EvoRate reflects structure: Higher EvoRate indicates stronger underlying predictability, leading to lower prediction loss.
- Estimator consistency: $\hat{\mathcal{R}}^{\infty}(Q^*)$ remains consistent across LSTM and MLP, closely aligning with EvoRate.
- Model adequacy: The ratio $\hat{\mathcal{R}}^k(Q)/\hat{\mathcal{R}}^\infty(Q^*)$ approaches 1 as M grows, indicating improved prediction performance.
- Estimator instability at low complexity: Negative $\Lambda(k)$ for $M=10^7$ arises from instability in $\hat{\Lambda}(k)$ when $k\gg p$ (true Markov order p). Refining this estimator is needed to avoid misinterpretation.

Conclusion

- Addressed minimal achievable risk in sequential modeling and sources of poor predictive performance.
- Introduced an information-theoretic framework using the learning curve $\Lambda(k)$ to link statistical dependencies and predictive performance.
- Proposed estimator $\hat{\mathcal{R}}^{\infty}(Q^*)$ to diagnose whether performance is limited by model capacity or intrinsic unpredictability.
- Theoretical and empirical validation confirms the framework across parametric and Markovian regimes.