

Enhancing Bioactivity Prediction via Spatial Emptiness Representation of Protein-ligand Complex and Union of Multiple Pockets

Zhiyuan Zhou, Yueming Yin, Yiming Yang, Yuguang Mu, Hoi Yeung Li, Adams Wai-Kin Kong

Nanyang Technological University, Singapore

Research Background

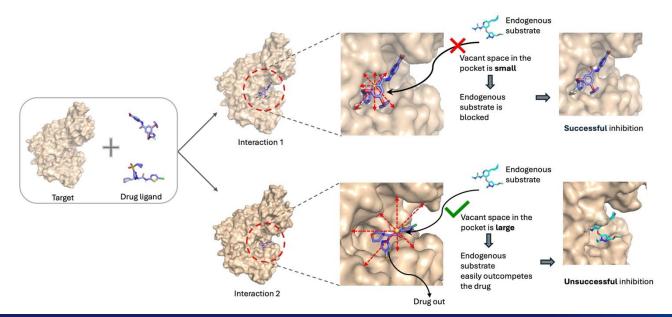
- **Bioactivity** is the measurable effect a compound exerts on a biological system
- Accurate prediction of bioactivity can help identify the most promising compounds
- The task is challenging, and there are multiple labels

Conventional methods: rely on the intrinsic properties of small molecules (Ligand only). E.g., QSAR models

Issue:

A compound cannot function biologically without its target and environment.

Recent methods: using protein information and constructing interaction graphs

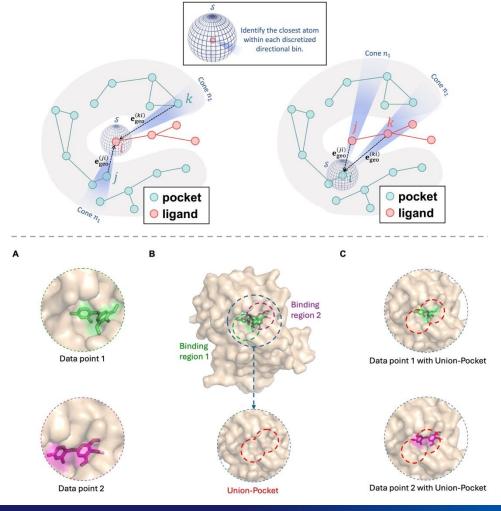

Issues:

- 1. Each pocket–ligand pair is treated as an independent data
- 2. Only concentrate on **local** binding region

Ligand only **Protein-ligand interaction based**

Motivation

- Bioactivity arises from specific biological interactions, and the **geometric information** of binding pocket is crucial
- The principle of **competitive inhibition**: drug molecules bind to the active site of a protein and block access for endogenous substrates
- Key geometric info: **Vacant space**. How much empty space remains, and to what extent does the ligand occupy the pocket?
- Vacant space small → endogenous substrate blocked → inhibition successful


Main Contributions

LigoSpace:

- **Geometric Representation of spatial Emptiness in protein-ligand Complex (GeoREC)**
 - Describe the surroundings of each node in the protein-ligand graph representation
 - Quantify atomic-level empty space within the complex •
- Union-Pocket
 - The entire pocket space can be accessible
 - Keep the protein information consistent, encourage the model to focus on the ligand
- Incorporate a pairwise loss
 - Traditional loss (MSE) is symmetric and treats each data point independently
 - Preserve the relative order among samples

Method

- GeoREC (Geometric Representation of spatial Emptiness in protein-ligand Complex)
 - Characterizes spatial configuration inside binding pockets by dividing surrounding space into cones, identifying nearest atoms in each region, and connecting them as geometric edges
- Global interaction model with Union-Pocket
 - Addresses fragmented local pockets from previous methods by defining **Union-Pocket** as the union of all atoms from candidate pockets for a given protein
- Pairwise loss
 - Predict the difference between any pair of data
 - Preserves relative order information, improving suitability for drug discovery

Result

- Tested against 6 baselines (DTIGN, GIGN, GAT, EHIGN, SIGN, MBP) on DTIGN & SIU datasets
- The labels in the dataset include Kd, Ki, IC50 and EC50
- LigoSpace consistently enhances the baseline across most datasets and metrics
- Table below shows the results on DTIGN dataset with 8 protein targets

Model	Metric	Dataset									
		I1	I2	I3	I4	I5	E1	E2	E3	Avg	Avg Imp%
DTIGN baseline	RMSE ↓	1.1977	0.7952	1.1443	0.9396	0.9518	0.9086	0.7765	1.0869	0.9751	-
	$r\uparrow$	0.3547	0.7128	0.7839	0.6177	0.6227	0.3363	0.6946	0.4825	0.5757	-
	$ au\uparrow$	0.2445	0.4922	0.5991	0.4574	0.4691	0.2139	0.4917	0.3786	0.4183	-
DTIGN+LigoSpace	$RMSE \downarrow$	1.0364	0.6507	1.0245	0.8124	0.8966	0.8645	0.7262	1.0150	0.8783	9.93%
	$r\uparrow$	0.5895	0.7888	0.8251	0.7334	0.6986	0.4969	0.7275	0.5924	0.6815	18.39%
	$ au\uparrow$	0.4239	0.5454	0.6360	0.5205	0.5083	0.3705	0.5243	0.4563	0.4982	19.09%
GIGN baseline	RMSE ↓	1.2365	0.7487	1.0677	0.8560	0.8700	0.9563	0.7545	0.9704	0.9325	-
	$r\uparrow$	0.4357	0.7234	0.8080	0.6888	0.7302	0.4435	0.7246	0.6285	0.6478	-
	$ au\uparrow$	0.3216	0.5083	0.6310	0.4920	0.5439	0.3443	0.5043	0.4664	0.4765	-
GIGN+LigoSpace	$RMSE \downarrow$	0.9515	0.6880	0.9403	0.8111	0.8302	0.8733	0.8737	0.9161	0.8605	7.72%
	$r\uparrow$	0.6861	0.7735	0.8539	0.7450	0.7513	0.4912	0.6637	0.6860	0.7063	9.03%
	$ au\uparrow$	0.4899	0.5378	0.6673	0.5439	0.5591	0.3786	0.5511	0.5228	0.5313	11.51%
GAT baseline	RMSE ↓	1.1801	0.9270	1.3433	1.0200	1.0547	0.8962	0.8579	1.1716	1.0564	-
	$r\uparrow$	0.4147	0.4771	0.6663	0.5091	0.5035	0.3771	0.5836	0.3468	0.4848	-
	$ au\uparrow$	0.2267	0.3115	0.4618	0.3685	0.3428	0.2451	0.3917	0.2938	0.3302	-
GAT+LigoSpace	$RMSE \downarrow$	1.1767	0.8906	1.3352	1.0037	1.0342	0.9252	0.8587	1.1476	1.0465	0.93%
	$r \uparrow$	0.4511	0.5437	0.6813	0.5570	0.5302	0.3604	0.5838	0.4060	0.5142	6.07%
	$ au\uparrow$	0.2922	0.3593	0.4823	0.4075	0.3690	0.2497	0.3819	0.3330	0.3594	8.82%

Ablation study

- > **Setup:** each ablation removes exactly one module from the LigoSpace model to isolate its effect.
- > GeoREC (G): removing G causes the largest performance drop GeoREC is the single most critical component.
- ➤ Union-Pocket (U): removing U yields consistent, moderate declines and shows strong synergy with GeoREC.
- > Hybrid loss (L): removing L mainly harms ranking/order consistency and slightly reduces overall accuracy.
- ➤ Overall: the full configuration (G + U + L) performs best components are complementary and work best together.

Table 3: Ablation study on DTIGN baseline (each variant excludes one component)

Dataset	DTIGN-GUL			DTIGN-GU(L)			DTIGN-(G)UL			DTIGN-G(U)L		
	$RMSE\downarrow$	R↑	$ au\uparrow$	$RMSE\downarrow$	R↑	$\tau\uparrow$	$RMSE\downarrow$	R↑	$ au\uparrow$	$RMSE\downarrow$	R↑	$ au\uparrow$
I1	1.0364	0.5895	0.4239	1.1163	0.5259	0.3494	1.1341	0.4721	0.3249	1.0739	0.5941	0.4128
I2	0.6507	0.7888	0.5454	0.7292	0.7284	0.5081	0.7724	0.7077	0.4665	0.7395	0.7331	0.5265
I3	1.0245	0.8251	0.6360	1.0557	0.8153	0.6175	1.1170	0.8196	0.6348	1.2061	0.7486	0.5446
I4	0.8124	0.7334	0.5205	0.8550	0.7072	0.5023	0.9149	0.6666	0.4725	0.8364	0.7149	0.5067
I5	0.8966	0.6986	0.5083	0.8625	0.7127	0.5225	0.9591	0.6343	0.4561	0.9017	0.6928	0.4994
E1	0.8645	0.4969	0.3705	0.8586	0.4513	0.3498	0.9513	0.3064	0.1727	0.9243	0.3176	0.1983
E2	0.7262	0.7275	0.5243	0.7600	0.7083	0.5066	0.8263	0.6384	0.4300	0.7323	0.7314	0.5332
E3	1.0150	0.5924	0.4563	1.0119	0.5955	0.4524	1.0679	0.5198	0.3917	1.0438	0.5656	0.4332
Avg	0.8783	0.6815	0.4982	0.9062	0.6556	0.4761	0.9679	0.5956	0.4187	0.9323	0.6373	0.4568

Thanks for your attention!