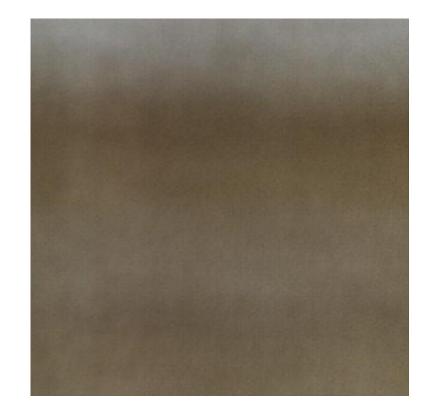


ScaleDiff:

Higher-Resolution Image Synthesis via Efficient and Model-Agnostic Diffusion

Sungho Koh, SeungJu Cha, Hyunwoo Oh, Kwanyoung Lee, Dong-Jin Kim

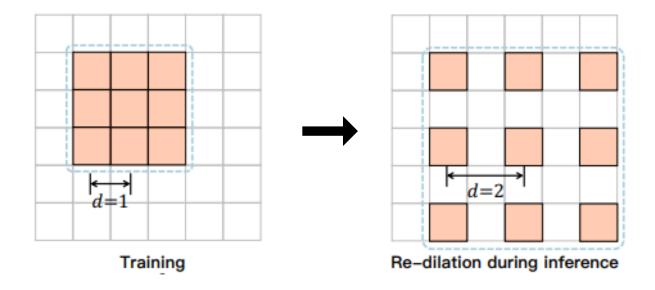
Text-to-Image diffusion model at higher resolution



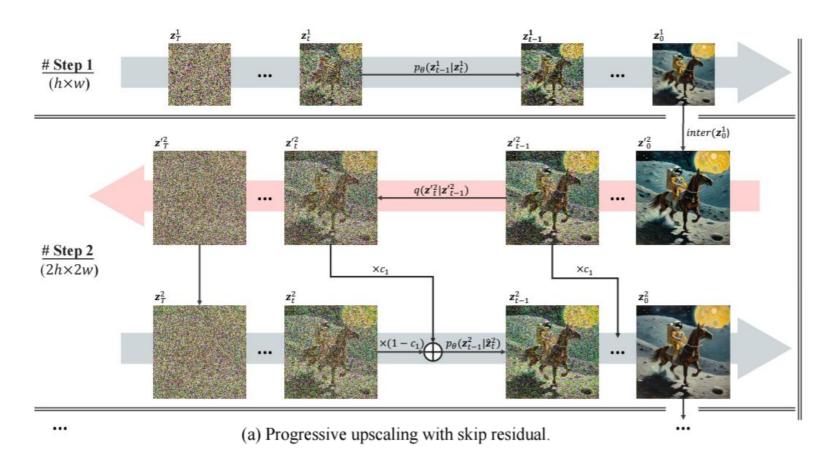
SDXL (1024x1024) FLUX (1024x1024)

Text-to-Image diffusion model at higher resolution

- U-Net: Exhibit repetitive artifacts and loss of global structure yet retain the capacity to generate local details.
- DiT: Demonstrate complete failure in generating both global structure and local detail at higher resolutions.



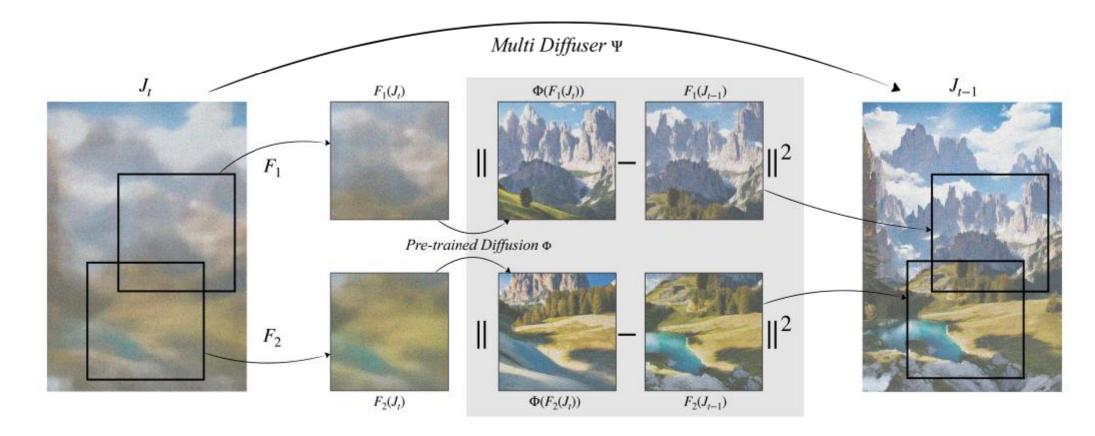
SDXL (4096x4096) FLUX (4096x4096)


Dilated convolution-based methods

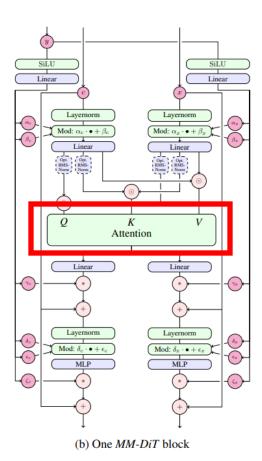
- Limited Receptive field of convolutional layer causes repetitive artifacts.
- Use dilated convolution to expand receptive field.
- Only compatible with U-Net architectures.

SDEdit-based methods

- Upsample low resolution image → diffuse → denoise
- Relies on local detail generation capability, which pretrained DiT lacks at high resolution.

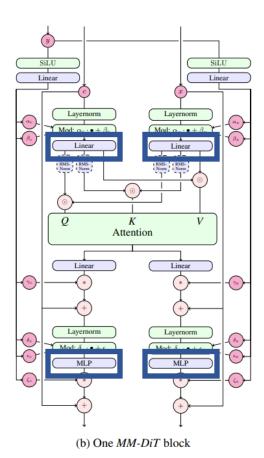


Meng et al., SDEdit: Guided Image Synthesis and Editing with Stochastic Differential Equations, ICLR 2022.

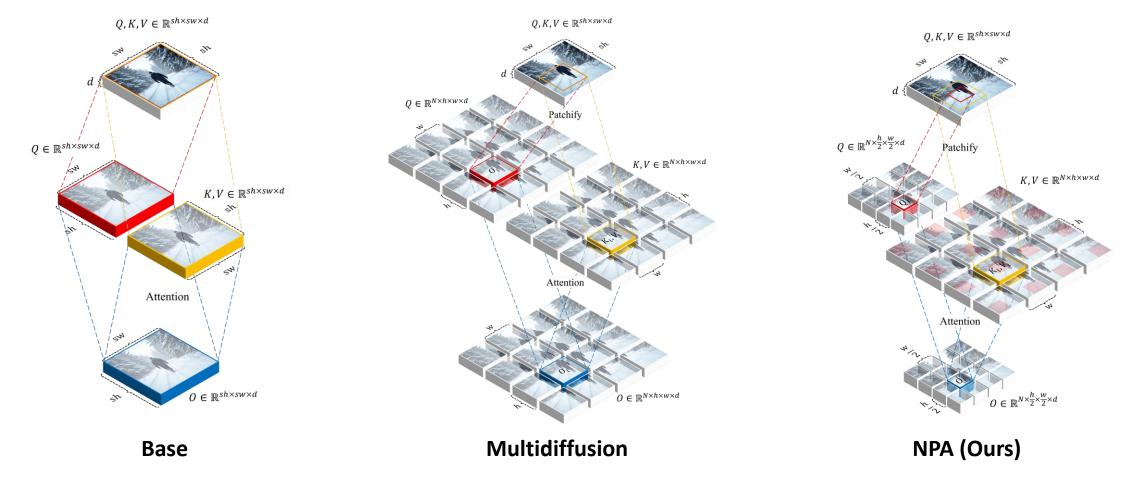

Du et al., DemoFusion: Democratising High-Resolution Image Generation With No \$\$\$, CVPR 2024.

Patch-based methods

- Divide high resolution canvas into overlapping low-resolution patches.
- Independently denoise each patch and combine their outputs.
- Massive computational redundancy due to necessary overlap to ensure smooth transition across patch boundary.



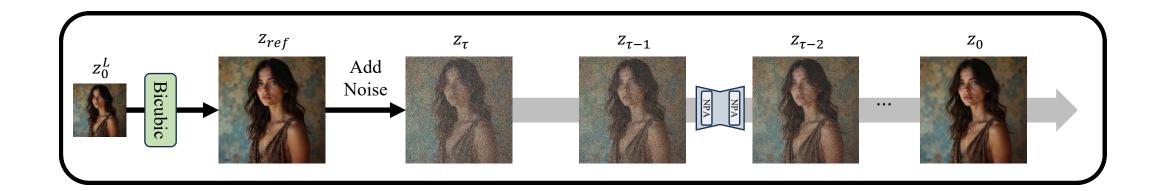
- Only self-attention (with positional encoding) is directly affected by resolution increase
- Non-self-attention layers (MLP, CNN, Cross-Attn) perform operations on individual tokens or local regions.


Patch based processing only in self-attention

- Only self-attention (with positional encoding) is directly affected by resolution increase
- Non-self-attention layers (MLP, CNN, Cross-Attn) perform operations on individual tokens or local regions.

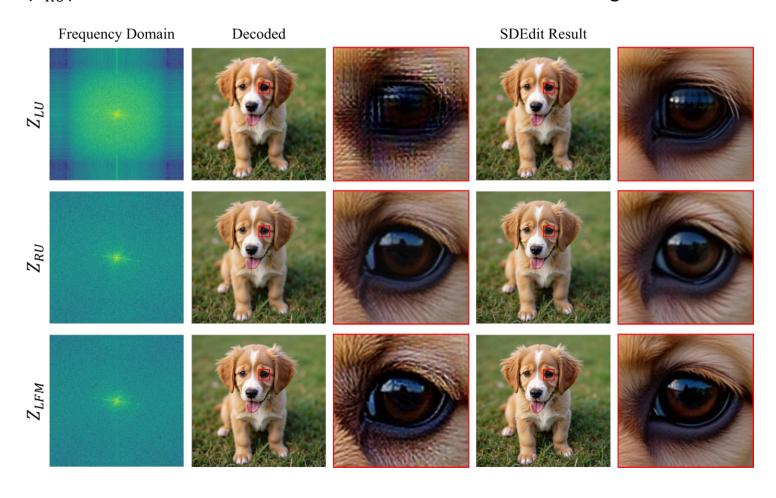
Process full high-resolution tensor in a single pass.

- Non-overlapping query patches → eliminate redundant computation.
- Extract overlapping key-value patch from query's spatial neighborhood.
- Overlap between these patches allows every query patch to attend to a wider context, ensuring smooth transitions.

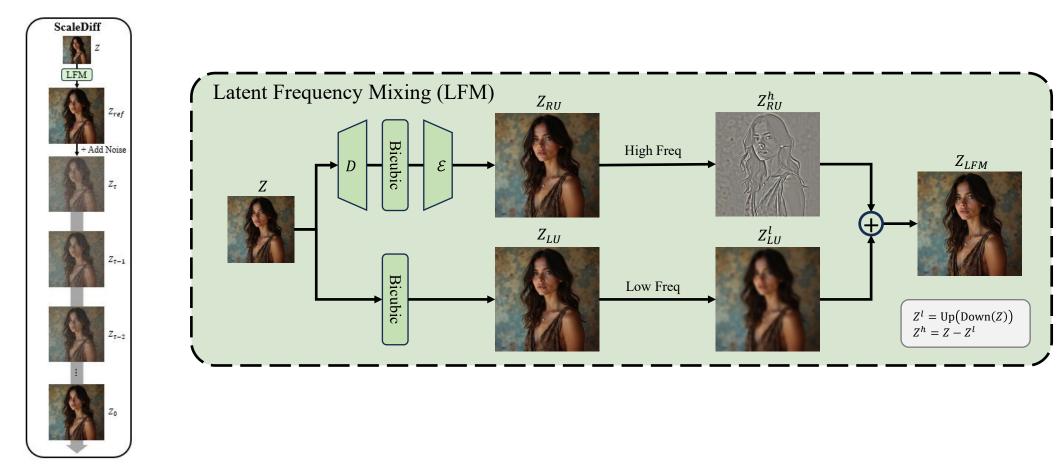


- Non-overlapping query patches → eliminate redundant computation.
- Extract overlapping key-value patch from query's spatial neighborhood.
- Overlap between these patches allows every query patch to attend to a wider context, ensuring smooth transitions.

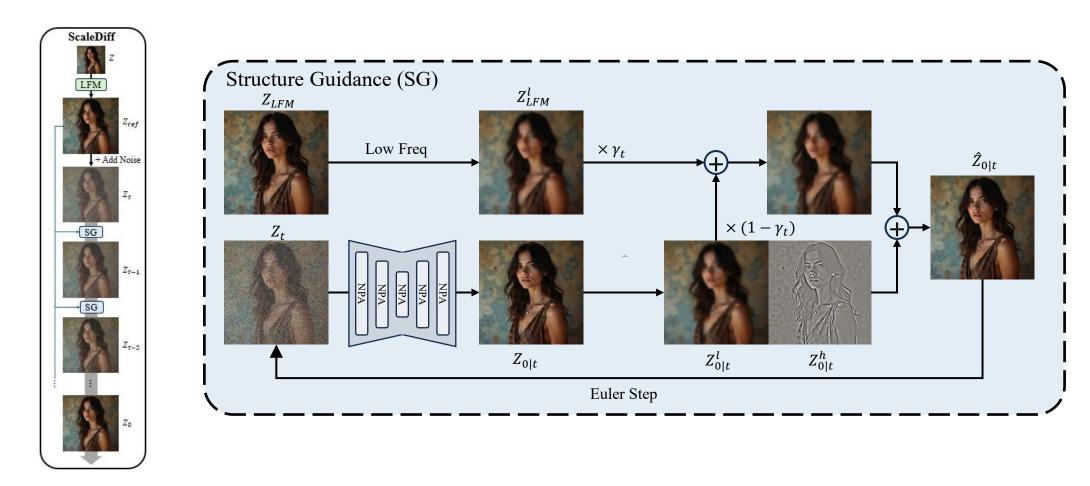
Method	Linear	Conv	Cross-Attn	Self-Attn		
Base MultiDiffusion NPA(Ours)	$s^{2}hwd^{2} \ (2s-1)^{2}hwd^{2} \ s^{2}hwd^{2}$	$\frac{s^2hwk^2d^2}{(2s-1)^2hwk^2d^2} \ \frac{s^2hwk^2d^2}{s^2hwk^2d^2}$	$s^2hwld \ (2s-1)^2hwld \ s^2hwld$	$s^4h^2w^2d \ (2s-1)^2h^2w^2d \ s^2h^2w^2d$		


ScaleDiff Upscaling Pipeline

- Integrate NPA into **SDEdit pipeline**.
- Starting from low resolution image, Upample → Diffuse → Denoise.

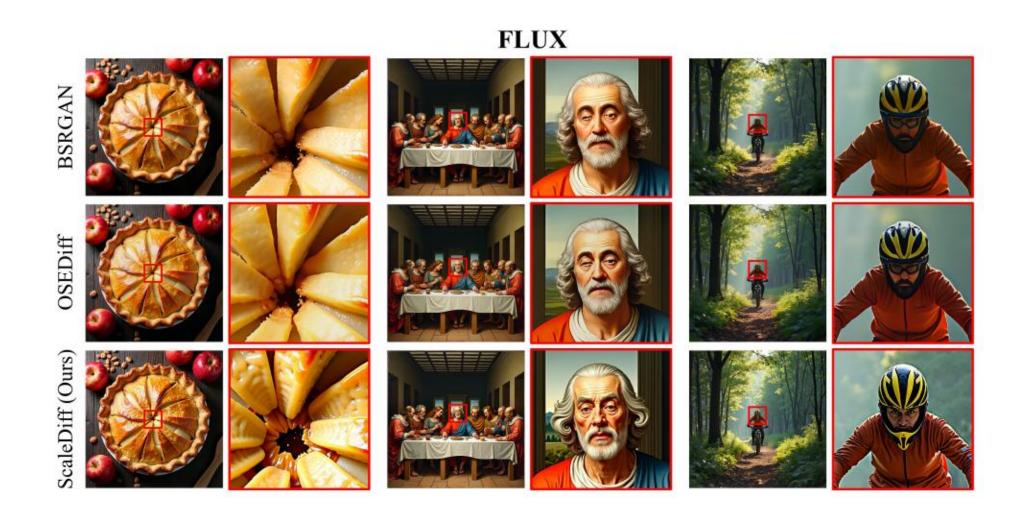

Latent Frequency Mixing (LFM)

- Upsample in Latent-Space (Z_{LU}) : Lack of high frequencies \rightarrow decoding artifacts. No oversmoothing bias.
- Upsample in RGB-Space (Z_{RU}): Biases the model toward **oversmoothed** results. No decoding artifacts


Latent Frequency Mixing (LFM)

- $Z_{ref} = Z_{LU}^l + Z_{RU}^h$
- Low-frequency components are obtained from Z_{LU} to alleviate oversmoothing bias.
- While **high-frequency** components are utilized from Z_{RU} to avoid decoding artifacts..

Structure Guidance (SG)


- $\hat{Z}_{0|t} = Z_{0|t}^h + (1 \gamma_t) Z_{0|t}^l + \gamma_t Z_{ref}^l$
- Guide **low-frequency components** to the reference to enforce global structural consistency.

Qualitative Comparison

Qualitative Comparison

Quantitative Comparison

Model	Resolution	Method	FID↓	KID↓	IS ↑	$\operatorname{FID}_p\downarrow$	$KID_p \downarrow$	$\mathrm{IS}_p\uparrow$	CLIP↑	Time ↓
		SDXL Direct	88.56	0.0124	13.25	58.73	0.0137	20.79	31.57	47
		SDXL + BSRGAN	64.60	0.0041	18.40	41.40	0.0092	23.19	33.03	13
		SDXL + OSEDiff	64.79	0.0046	18.89	41.76	0.0094	23.58	<u>32.79</u>	$\frac{29}{71}$
		UltraPixel	64.61	0.0056	18.58	42.44	0.0093	25.15	32.61	71
		ScaleCrafter	68.68	0.0033	16.56	43.46	0.0064	23.52	32.07	64
	2048^{2}	HiDiffusion	69.52	0.0040	18.22	42.92	0.0067	24.01	31.50	33
		DiffuseHigh	<u>63.27</u>	0.0033	19.10	38.15	0.0062	24.95	32.77	45
SDXL		FreeScale	63.50	0.0031	19.06	38.27	0.0062	24.25	32.62	69
SDAL		AccDiffusion v2	64.86	0.0039	18.37	38.24	0.0068	25.66	32.62	199
		Demofusion	63.36	0.0032	<u>19.15</u>	35.98	0.0050	26.42	32.72	125
		ScaleDiff (Ours)	62.98	0.0032	19.54	38.03	0.0067	<u>25.70</u>	33.11	31
		SDXL Direct	182.05	0.0717	7.99	80.80	0.0250	17.68	27.82	328
		SDXL + BSRGAN	64.88	0.0044	18.16	48.97	0.0160	17.04	<u>33.02</u>	14
		SDXL + OSEDiff	65.35	0.0045	18.69	45.67	0.0118	17.61	32.88	122
		UltraPixel	65.39	0.0055	19.08	47.09	0.0112	20.64	32.33	386
		ScaleCrafter	86.66	0.0110	15.14	79.39	0.0217	14.47	30.25	932
	4096^{2}	HiDiffusion	105.37	0.0216	13.87	112.30	0.0494	12.22	27.21	124
		DiffuseHigh	<u>63.91</u>	0.0034	18.99	42.30	0.0079	19.54	32.68	325
		FreeScale	64.33	0.0036	<u>19.18</u>	<u>39.56</u>	0.0079	18.91	32.56	517
		AccDiffusion v2	64.64	0.0037	18.56	40.92	0.0083	18.42	32.34	1599
		Demofusion	65.06	0.0041	19.13	41.29	0.0079	19.59	32.61	1005
		ScaleDiff (Ours)	61.87	0.0025	19.56	38.89	0.0080	<u>20.41</u>	33.04	<u>113</u>

ScaleDiff:

Higher-Resolution Image Synthesis via Efficient and Model-Agnostic Diffusion

Sungho Koh, SeungJu Cha, Hyunwoo Oh, Kwanyoung Lee, Dong-Jin Kim

Code Available

