Shallow Flow Matching for Coarse-to-Fine Text-to-Speech Synthesis

Dong Yang, Yiyi Cai, Yuki Saito, Lixu Wang, Hiroshi Saruwatari

Presenter: Dong Yang

Ph.D. Student, Saruwatari & Saito Lab, The University of Tokyo

Motivation

- Coarse-to-fine generative models with flow matching (FM)
 - Weak generator: coarse representations
 - FM module (refiner): fine representations

Motivation

- Coarse-to-fine generative models with flow matching (FM)
 - Weak generator: coarse representations
 - FM module (refiner): fine representations
- Coarse representations
 - Conventional: FM conditions
 - Training and inference starts from pure noise
 - Proposed: build intermediate states on the FM paths
 - Training and inference starts from these intermediate states

Motivation

- Coarse-to-fine generative models with flow matching (FM)
 - Weak generator: coarse representations
 - FM module (refiner): fine representations
- Coarse representations
 - Conventional: FM conditions
 - Training and inference start from pure noise
 - Proposed: build intermediate states on the FM paths
 - Training and inference start from these intermediate states
- Shallow flow matching (SFM)
 - More focused computation
 - Better quality
 - More stable sampling process
 - Faster inference when using adaptive-step ODE solvers

- Theorem 1
 - How to map samples from a Gaussian distribution onto the FM paths

Theorem 1. For any random variable $\mathbf{x}_m \sim \mathcal{N}(t_m \mathbf{x}_1, \sigma_m^2 \mathbf{I})$, where $t_m \in [0, \infty)$ and $\sigma_m \in (0, \infty)$, we define a transformation that maps \mathbf{x}_m onto the conditional optimal transport (CondOT) paths. The output distribution varies continuously with respect to t_m and σ_m under the Wasserstein-2 metric.

$$\Delta = (1 - \sigma_{\min})t_m + \sigma_m,$$

$$m{x}_{ au} = egin{cases} \sqrt{(1-(1-\sigma_{\min})t_m)^2 - \sigma_m^2} m{x}_0 + m{x}_m, & ext{if } \Delta < 1, \ rac{1}{\Delta}m{x}_m, & ext{if } \Delta \geq 1, \end{cases}$$

where $x_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$, with corresponding $\tau = \min(t_m, \frac{t_m}{\Delta})$ on the path.

- Theorem 2
 - How to divide the FM paths into two segments

Theorem 2. For arbitrary intermediate states on the CondOT paths:

$$x_{t_m} = (1 - t_m)x_0 + t_m(x_1 + \sigma_{\min}x_0), \quad t_m \in (0, 1), x_0 \sim \mathcal{N}(\mathbf{0}, \mathbf{I}),$$

we can divide the paths into two segments at t_m and represent the flow and vector field using piecewise functions:

$$egin{aligned} oldsymbol{x}_t &= egin{cases} (1-rac{t}{t_m})oldsymbol{x}_0 + rac{t}{t_m}oldsymbol{x}_{t_m}, & ext{if } t < t_m, \ (1-rac{t-t_m}{1-t_m})oldsymbol{x}_{t_m} + rac{t-t_m}{1-t_m}(oldsymbol{x}_1 + \sigma_{\min}oldsymbol{x}_0), & ext{if } t \geq t_m, \ oldsymbol{u}_t &= egin{cases} rac{1}{t_m}(oldsymbol{x}_{t_m} - oldsymbol{x}_0), & ext{if } t < t_m, \ rac{1}{1-t_m}(oldsymbol{x}_1 + \sigma_{\min}oldsymbol{x}_0 - oldsymbol{x}_{t_m}), & ext{if } t \geq t_m. \end{cases}$$

- Validation on TTS models (training)
 - Orthogonal projection
 - Adaptively find the intermediate timestep

Algorithm 1 Training procedure of SFM

Input: the training set $(\mathcal{X}, \mathcal{C})$.

- 1: repeat
- 2: Sample (X_1, C) from $(\mathcal{X}, \mathcal{C})$;
- 3: Generate coarse representations

$$H_g, X_g \leftarrow g_{\omega}(C)$$

$$oldsymbol{X_h}, \hat{t}_{oldsymbol{h}}, \log \hat{\sigma}_{oldsymbol{h}}^2 \leftarrow oldsymbol{h_{oldsymbol{\psi}}}(oldsymbol{H_g})$$

4: Compute coarse loss

$$\mathcal{L}_{ ext{coarse}} = \mathbb{E}||oldsymbol{X}_{oldsymbol{g}} - oldsymbol{X}_1||^2$$

5: Project onto CondOT paths

$$t_{m{h}} \leftarrow \mathbb{E}\left[\frac{sg[m{X}_{m{h}}] \cdot m{X}_1}{m{X}_1 \cdot m{X}_1}\right], \quad \sigma_{m{h}}^2 \leftarrow \mathbb{E}||sg[m{X}_{m{h}}] - t_{m{h}} m{X}_1||^2$$

6: Construct the intermediate state

$$\Delta \leftarrow \max((1 - \sigma_{\min})t_{h} + \sigma_{h}, 1)$$

$$\boldsymbol{X_{h}} \leftarrow \frac{1}{\Delta}\boldsymbol{X_{h}}, \quad t_{h} \leftarrow \frac{1}{\Delta}t_{h}, \quad \sigma_{h}^{2} \leftarrow \frac{1}{\Delta^{2}}\sigma_{h}^{2}$$

$$\boldsymbol{X_{0}} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$$

$$\boldsymbol{X_{h}} \leftarrow \sqrt{\max((1 - (1 - \sigma_{\min})t_{h})^{2} - \sigma_{h}^{2}, 0)}\boldsymbol{X_{0}} + \boldsymbol{X_{h}}$$

$$\mathcal{L}_{t} = (\hat{t_{h}} - t_{h})^{2}, \quad \mathcal{L}_{\sigma} = (\log \hat{\sigma_{h}}^{2} - \log \sigma_{h}^{2})^{2}, \quad \mathcal{L}_{\mu} = \mathbb{E}||\boldsymbol{X_{h}} - t_{h}\boldsymbol{X_{1}}||^{2}$$

7: Apply FM

$$t \sim \mathcal{U}[0, 1], \quad t \leftarrow \mathcal{S}(t)$$
 $oldsymbol{X}_t \leftarrow (1 - t) oldsymbol{X}_h + t(oldsymbol{X}_1 + \sigma_{\min} oldsymbol{X}_0)$
 $oldsymbol{U}_t \leftarrow rac{1}{1 - t_h} (oldsymbol{X}_1 + \sigma_{\min} oldsymbol{X}_0 - oldsymbol{X}_h)$
 $t \leftarrow (1 - t_h)t + t_h$
 $oldsymbol{\mathcal{L}}_{\text{CFM}} = \mathbb{E}||oldsymbol{v}_{oldsymbol{\theta}}(oldsymbol{X}_t, t) - oldsymbol{U}_t||^2$

8: Apply gradient descent to minimize \mathcal{L}_{SFM}

$$\mathcal{L}_{\mathrm{SFM}} = \mathcal{L}_{\mathrm{coarse}} + \mathcal{L}_t + \mathcal{L}_{\sigma} + \mathcal{L}_{\mu} + \mathcal{L}_{\mathrm{CFM}}$$

9: **until** convergence

- Validation on TTS models (training)
 - Orthogonal projection
 - Adaptively find the intermediate timestep
 - Theorem 1
 - Intermediate state construction

Algorithm 1 Training procedure of SFM

Input: the training set $(\mathcal{X}, \mathcal{C})$.

- 1: repeat
- 2: Sample (X_1, C) from $(\mathcal{X}, \mathcal{C})$;
- 3: Generate coarse representations

$$H_g, X_g \leftarrow g_{\omega}(C)$$

$$oldsymbol{X_h}, \hat{t}_{oldsymbol{h}}, \log \hat{\sigma}_{oldsymbol{h}}^2 \leftarrow oldsymbol{h_{oldsymbol{\psi}}}(oldsymbol{H_g})$$

4: Compute coarse loss

$$\mathcal{L}_{ ext{coarse}} = \mathbb{E}||oldsymbol{X}_{oldsymbol{q}} - oldsymbol{X}_1||^2$$

5: Project onto CondOT paths

$$t_{m{h}} \leftarrow \mathbb{E}\left[\frac{sg[m{X}_{m{h}}] \cdot m{X}_1}{m{X}_1 \cdot m{X}_1}\right], \quad \sigma_{m{h}}^2 \leftarrow \mathbb{E}||sg[m{X}_{m{h}}] - t_{m{h}} m{X}_1||^2$$

6: Construct the intermediate state

$$\Delta \leftarrow \max((1 - \sigma_{\min})t_h + \sigma_h, 1)$$

$$\boldsymbol{X_h} \leftarrow \frac{1}{\Delta}\boldsymbol{X_h}, \quad t_h \leftarrow \frac{1}{\Delta}t_h, \quad \sigma_h^2 \leftarrow \frac{1}{\Delta^2}\sigma_h^2$$

$$\boldsymbol{X_0} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$$

$$\boldsymbol{X_h} \leftarrow \sqrt{\max((1 - (1 - \sigma_{\min})t_h)^2 - \sigma_h^2, 0)}\boldsymbol{X_0} + \boldsymbol{X_h}$$

$$\mathcal{L}_t = (\hat{t}_h - t_h)^2, \quad \mathcal{L}_\sigma = (\log \hat{\sigma}_h^2 - \log \sigma_h^2)^2, \quad \mathcal{L}_\mu = \mathbb{E}||X_h - t_h X_1||^2$$

7: Apply FM

$$t \sim \mathcal{U}[0, 1], \quad t \leftarrow \mathcal{S}(t)$$
 $oldsymbol{X}_t \leftarrow (1 - t) oldsymbol{X}_h + t(oldsymbol{X}_1 + \sigma_{\min} oldsymbol{X}_0)$
 $oldsymbol{U}_t \leftarrow rac{1}{1 - t_h} (oldsymbol{X}_1 + \sigma_{\min} oldsymbol{X}_0 - oldsymbol{X}_h)$
 $t \leftarrow (1 - t_h)t + t_h$
 $oldsymbol{\mathcal{L}}_{\text{CFM}} = \mathbb{E}||oldsymbol{v}_{oldsymbol{ heta}}(oldsymbol{X}_t, t) - oldsymbol{U}_t||^2$

3: Apply gradient descent to minimize \mathcal{L}_{SFN}

$$\mathcal{L}_{\mathrm{SFM}} = \mathcal{L}_{\mathrm{coarse}} + \mathcal{L}_t + \mathcal{L}_{\sigma} + \mathcal{L}_{\mu} + \mathcal{L}_{\mathrm{CFM}}$$

9: until convergence

- Validation on TTS models (training)
 - Orthogonal projection
 - Adaptively find the intermediate timestep
 - Theorem 1
 - Intermediate state construction
 - Theorem 2
 - · Single-segment piecewise flow

Algorithm 1 Training procedure of SFM

Input: the training set $(\mathcal{X}, \mathcal{C})$.

- 1: repeat
- 2: Sample (X_1, C) from $(\mathcal{X}, \mathcal{C})$;
- 3: Generate coarse representations

$$H_g, X_g \leftarrow g_{\omega}(C)$$

$$oldsymbol{X_h}, \hat{t}_{oldsymbol{h}}, \log \hat{\sigma}_{oldsymbol{h}}^2 \leftarrow oldsymbol{h_{oldsymbol{\psi}}}(oldsymbol{H_g})$$

4: Compute coarse loss

$$\mathcal{L}_{ ext{coarse}} = \mathbb{E}||oldsymbol{X}_{oldsymbol{q}} - oldsymbol{X}_1||^2$$

5: Project onto CondOT paths

$$t_{m{h}} \leftarrow \mathbb{E}\left[\frac{sg[m{X}_{m{h}}] \cdot m{X}_1}{m{X}_1 \cdot m{X}_1}\right], \quad \sigma_{m{h}}^2 \leftarrow \mathbb{E}||sg[m{X}_{m{h}}] - t_{m{h}} m{X}_1||^2$$

6: Construct the intermediate state

$$\Delta \leftarrow \max((1 - \sigma_{\min})t_{h} + \sigma_{h}, 1)$$

$$X_{h} \leftarrow \frac{1}{\Delta}X_{h}, \quad t_{h} \leftarrow \frac{1}{\Delta}t_{h}, \quad \sigma_{h}^{2} \leftarrow \frac{1}{\Delta^{2}}\sigma_{h}^{2}$$

$$oldsymbol{X}_0 \sim \mathcal{N}(oldsymbol{0}, oldsymbol{I})$$

$$oldsymbol{X_h} \leftarrow \sqrt{\max((1-(1-\sigma_{\min})t_{oldsymbol{h}})^2-\sigma_{oldsymbol{h}}^2,0)} oldsymbol{X}_0 + oldsymbol{X_h}$$

$$\mathcal{L}_t = (\hat{t}_h - t_h)^2, \quad \mathcal{L}_\sigma = (\log \hat{\sigma}_h^2 - \log \sigma_h^2)^2, \quad \mathcal{L}_\mu = \mathbb{E}||\boldsymbol{X}_h - t_h \boldsymbol{X}_1||^2$$

: Apply FM

$$t \sim \mathcal{U}[0, 1], \quad t \leftarrow \mathcal{S}(t)$$

$$\boldsymbol{X}_{t} \leftarrow (1 - t)\boldsymbol{X}_{h} + t(\boldsymbol{X}_{1} + \sigma_{\min}\boldsymbol{X}_{0})$$

$$\boldsymbol{U}_{t} \leftarrow \frac{1}{1 - t_{h}}(\boldsymbol{X}_{1} + \sigma_{\min}\boldsymbol{X}_{0} - \boldsymbol{X}_{h})$$

$$t \leftarrow (1 - t_{h})t + t_{h}$$

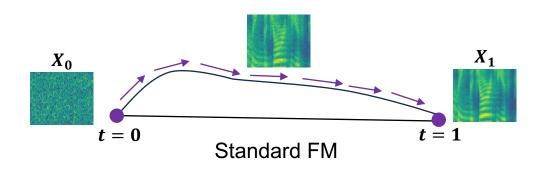
$$\mathcal{L}_{\text{CFM}} = \mathbb{E}||\boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{X}_{t}, t) - \boldsymbol{U}_{t}||^{2}$$

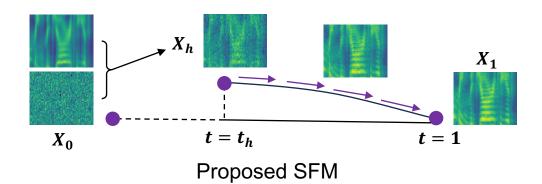
3: Apply gradient descent to minimize \mathcal{L}_{SFN}

$$\mathcal{L}_{\mathrm{SFM}} = \mathcal{L}_{\mathrm{coarse}} + \mathcal{L}_t + \mathcal{L}_{\sigma} + \mathcal{L}_{\mu} + \mathcal{L}_{\mathrm{CFM}}$$

9: **until** convergence

- Validation on TTS models (inference)
 - SFM strength ($\alpha \ge 1$)
 - Encourage stronger guidance of the intermediate state





Algorithm 2 Inference procedure of SFM

Input: Condition C.

1: Generate coarse representations

$$egin{aligned} m{H_g}, m{X_g} &\leftarrow m{g_{\omega}}(m{C}) \ m{X_h}, t_{m{h}}, \log \sigma_{m{h}}^2 &\leftarrow m{h_{\psi}}(m{H_g}) \ \sigma_{m{h}}^2 &\leftarrow \exp(\log \sigma_{m{h}}^2) \end{aligned}$$

2: Construct the intermediate state with SFM strength

$$\Delta \leftarrow \max(\alpha((1 - \sigma_{\min})t_{h} + \sigma_{h}), 1)$$

$$\boldsymbol{X_{h}} \leftarrow \frac{\alpha}{\Delta}\boldsymbol{X_{h}}, \quad t_{h} \leftarrow \frac{\alpha}{\Delta}t_{h}, \quad \sigma_{h}^{2} \leftarrow \frac{\alpha^{2}}{\Delta^{2}}\sigma_{h}^{2}$$

$$\boldsymbol{X_{0}} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I})$$

$$\boldsymbol{X_h} \leftarrow \sqrt{\max((1 - (1 - \sigma_{\min})t_h)^2 - \sigma_h^2, 0)} \boldsymbol{X_0} + \boldsymbol{X_h},$$

3: Use an ODE solver to solve the integral

$$\boldsymbol{X}_{\mathrm{pred}} = \boldsymbol{X}_{\boldsymbol{h}} + \int_{t_{\boldsymbol{h}}}^{1} \boldsymbol{v}_{\boldsymbol{\theta}}(\boldsymbol{X}_{t}, t) dt$$

Configurations

Table 1: **Training and inference configurations of TTS models.** β : CFG strength. †: 24,000 maximum frames.

Model	Vocoder	Dataset	Epochs	Batch Size	Learning Rate	Warmup	GPUs	\boldsymbol{eta}	Solver
Matcha-TTS [1]	Vocos [4]	LJ Speech [6]	800	128	4×10^{-4}	_	1	_	Euler
Matcha-TTS	Vocos	VCTK [7]	800	128	2×10^{-4}	_	2	_	Euler
StableTTS [2]	Voços	VCTK	800	128	2×10^{-4}	10%	2	3	Dopri(5)
CosyVoice [3]	HiFi-GAN [5]	LibriTTS [8]	200	dynamic†	1×10^{-4}	10%	8	0.7	Euler
CosyVoice-DiT	Vocos	LibriTTS	200	256	1×10^{-4}	10%	4	3	Dopri(5)

- [1] S. Mehta et al. Matcha-TTS: A fast TTS architecture with conditional flow matching. In ICASSP, pages 11341–11345, 2024.
- [2] StableTTS. https://github.com/KdaiP/StableTTS, 2024.
- [3] Z. Du et al. CosyVoice: A scalable multilingual zero-shot text-to-speech synthesizer based on supervised semantic tokens. arXiv preprint arXiv:2407.05407, 2024
- [4] H. Siuzdak. Vocos: Closing the gap between time-domain and fourier-based neural vocoders for high-quality audio synthesis. In ICLR, 2024.
- [5] J. Kong et al. HiFi-GAN: Generative adversarial networks for efficient and high fidelity speech synthesis. In NeurIPS, 2020.
- [6] K. Ito and L. Johnson. The LJ Speech dataset. https://keithito.com/ LJ-Speech-Dataset/, 2017.
- [7] C. Veaux et al. CSTR VCTK corpus: English multi-speaker corpus for CSTR voice cloning toolkit. The Centre for Speech Technology Research (CSTR), 2017.
- [8] H. Zen et al. LibriTTS: A corpus derived from LibriSpeech for text-to-speech. In Interspeech, pages 1526–1530, 2019.

- SFM strength selection
 - PMOS: selection criterion
 - Increase initially and decrease as α grows

Table 3: Partial objective evaluation results on validation sets for α selection. The highest value for each metric is highlighted in bold. \overline{PMOS} : the average value of pseudo-MOS. WER: word error rate. SIM: speaker similarity.

α	$ ilde{t}_{m{g}}$	$\tilde{\sigma}_{m{g}}$	PMOS↑	UTMOS [1]↑	UTMOSv2 [2]↑	Distill-MOS [3]↑	WER(%)↓	SIM↑
Mate	cha-TT	S (SFA	1) trained	on LJ Speech				_
1.0	0.099	0.092	4.036	4.194	3.721	4.192	4.641	0.972
2.0	0.198	0.183	4.158	4.305	3.834	4.337	3.496	0.973
2.5	0.248	0.229	4.176	4.276	3.872	4.381	3.556	0.972
3.0	0.297	0.275	4.168	4.260	3.842	4.402	3.496	0.970
3.5	0.347	0.320	4.132	4.190	3.802	4.403	3.496	0.969
4.0	0.397	0.366	4.107	4.137	3.763	4.421	3.556	0.966
5.0	0.496	0.458	4.025	3.977	3.694	4.403	3.376	0.960
6.0	0.520	0.480	3.997	3.958	3.648	4.386	3.315	0.958
7.0	0.520	0.480	3.990	3.960	3.625	4.386	3.315	0.958
8.0	0.520	0.480	3.990	3.959	3.625	4.386	3.315	0.958
9.0	0.520	0.480	3.993	3.956	3.638	4.386	3.315	0.958
10.0	0.520	0.480	3.987	3.955	3.620	4.386	3.315	0.958

^[1] T. Saeki et al. UTMOS: utokyo-sarulab system for voicemos challenge 2022. In Interspeech, pages 4521–4525, 2022.

^[2] K. Baba et al. The t05 system for the VoiceMOS Challenge 2024: Transfer learning from deep image classifier to naturalness MOS prediction of high-quality synthetic speech. In SLT, 2024.

^[3] B. Stahl and H. Gamper. Distillation and pruning for scalable self-supervised representation-based speech quality assessment. In ICASSP, 2025.

- Evaluation results
 - All SFM models perform better in pseudo-MOS, CMOS, and SMOS

Table 4: **Evaluation results on test sets.** * indicates statistically significant differences (p < 0.05) compared with SFM models in subjective evaluations. The highest value for each metric is bolded. WER: word error rate. SIM: speaker similarity. CMOS: comparative mean opinion score. SMOS: similarity mean opinion score.

System	UTMOS↑	UTMOSv2↑	Distill-MOS ↑	WER↓	SIM↑	CMOS ↑	SMOS↑			
Matcha-TTS trained on LJ Speech										
Ground truth	4.380	3.964	4.241	3.566	1.000	+0.22	_			
Reconstructed	4.085	3.739	4.208	3.472	0.993	+0.12	_			
Baseline	4.186	3.692	4.282	3.308	0.971	-0.48	_			
Ablated	4.217	3.763	4.311	3.355		-0.27				
SFM (α =2.5)	4.257	3.848	4.386	3.413	0.972	0.00	_			
Matcha-TTS t	rained on	VCTK								
Ground truth	3.999	3.562	3.986	1.534	1.000	+0.16	_			
Reconstructed	3.819	3.246	3.977	1.666	0.985	+0.08	_			
Baseline	4.008	2.978	3.870	1.534	0.939	-0.31*	_			
Ablated	4.026	2.997	3.872	1.613		-0.39*	_			
SFM (α =3.5)	4.106	3.105	3.898	0.952	0.937	0.00	_			
StableTTS trained on VCTK										
Ground truth	3.999	3.562	3.986	1.534	1.000	+0.48*	_			
Reconstructed	3.360	2.908	3.855	1.719	0.972	+0.04	_			
Ablated	3.328	2.958	3.929	1.798	0.932	-0.34*				
SFM (α =3.0)	3.516	3.020	3.953	1.745	0.933	0.00	_			
CosyVoice trai	ined on Lil	briTTS								
Ground truth	4.136	3.262	4.345	3.180	1.000	+0.19	3.40			
Reconstructed	3.942	3.126	4.336	3.146	0.993	-0.24	2.82*			
Baseline	4.191	3.303	4.481	3.513	0.932	-0.21*	3.47			
Ablated	4.183	3.369	4.487	3.578		-0.14	3.58			
SFM (α =2.0)	4.194	3.480	4.541	3.810	0.931	0.00	3.67			
CosyVoice-DiT trained on LibriTTS										
Ground truth	4.136	3.262	4.345	3.180	1.000	+0.23	3.31			
Reconstructed	3.322	2.855	4.211	3.144	0.989	-0.12	2.86*			
Ablated	3.499	3.086	4.316	3.614		-0.31*	3.15			
SFM (α =2.5)	3.751	3.171	4.502	3.598	0.932	0.00	3.21			

Acceleration of adaptive-step ODE solvers

Table 2: Adaptive-step ODE solvers used in our experiments. All of them are variants of the explicit Runge–Kutta family.

Abbreviation	Full Name	Order
Heun(2)	Adaptive Heun's Method	2
Fehlberg(2)	Runge-Kutta-Fehlberg Method	2
Bosh(3)	Bogacki–Shampine Method	3
Dopri(5)	Dormand–Prince Method	5

Table 5: **Partial RTF and NFE results for adaptive-step ODE solvers.** RTF denotes the mean real-time factor. Rate (%) denotes the relative speedup in terms of RTF compared to the ablated model. NFE is number of function evaluations.

System	Heun(2)			F	Fehlberg(2)			Bosh(3)			Dopri(5)		
	RTF↓	Rate↑	NFE↓	RTF↓	Rate↑	NFE↓	RTF↓	Rate↑	NFE↓	RTF↓	Rate↑	NFE↓	
Matcha-TTS	Matcha-TTS trained on LJ Speech												
Baseline	0.407	-1.496	312.36	0.054	3.571	44.82	0.271	-0.370	223.95	0.142	2.069	120.10	
Ablated	0.401	0.000	306.72	0.056	0.000	45.28	0.270	0.000	221.81	0.145	0.000	121.46	
SFM (α =1.0)	0.361	9.858	277.56	0.053	4.171	44.08	0.225	16.924	186.23	0.132	9.100	111.14	
SFM (α =2.0)	0.299	25.541	229.43	0.048	13.306	39.16	0.187	30.931	153.08	0.115	20.484	96.02	
SFM (α =3.0)	0.249	37.931	191.49	0.043	22.749	34.88	0.157	41.895	129.02	0.100	30.753	84.20	
SFM (α =4.0)	0.207	48.486	156.78	0.037	34.246	29.74	0.131	51.576	107.90	0.086	40.559	72.56	
SFM (α =5.0)	0.157	60.825	120.07	0.027	50.968	22.14	0.110	59.266	90.74	0.076	47.605	63.74	

Conclusion

- Shallow flow matching
 - Scene
 - The FM module serves as a refiner
 - Method
 - Use coarse representations to build intermediate states on the FM paths
 - Effect
 - Better generation quality
 - Faster inference when using adaptive-step ODE solvers
 - Outlook
 - Applicable to other tasks and domains

Check our project page: https://github.com/ydqmkkx/ShallowFlowMatching-TTS

