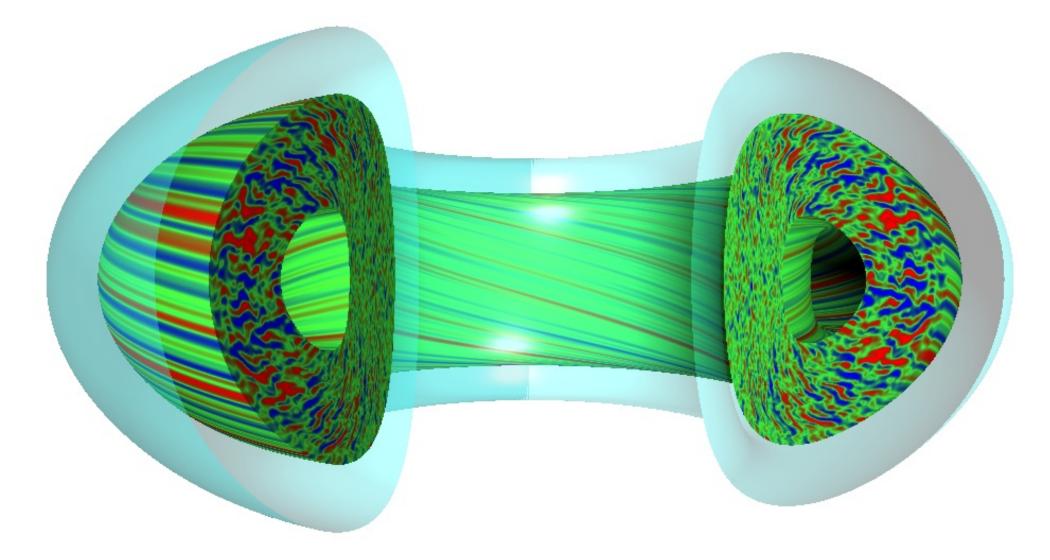
GyroSwin: 5D Surrogates for Gyrokinetic Plasma Turbulence Simulations

Fabian Paischer, Gianluca Galletti, William Hornsby, Paul Setinek, Lorenzo Zanisi, Naomi Carey, Stanislas Pamela, Johannes Brandstetter

Plasma Turbulence

- Turbulence arises due to micro-instabilities in plasma (Francis F. Chen, 2016)
 - Leads to particle and energy transport (Romanelli et al. 2014)
 - Causes plasma to leak out of its magnetic cage => needs to be controlled!
 - To be able to control it, we first need to be able to simulate it!



Source: https://w3.pppl.gov/~hammett/viz/viz.html

Modeling Plasma Turbulence

- Described via nonlinear Gyrokinetic equations (Peeters et al. 2009)
 - Evolve a 5D (2x velocity, 3x spatial) distribution function over time
 - Numerically solving those equations can take months!
- Practitioners rely on reduced numerical solutions without nonlinear term (Bourdelle et al. 2007)

$$\underbrace{\frac{\partial f}{\partial t} + (v_{\parallel} \boldsymbol{b} + \boldsymbol{v}_{D}) \cdot \nabla f - \frac{\mu B}{m} \frac{\boldsymbol{B} \cdot \nabla B}{B^{2}} \frac{\partial f}{\partial v_{\parallel}}}_{\text{Linear}} + \underbrace{\boldsymbol{v}_{\chi} \cdot \nabla f}_{\text{Nonlinear}} = S$$

Motivation

- Quasilinear approximations (Bourdelle et al. 2007, Staebler et al. 2007)
 - Are based on linear simulations (3D) + saturation rules => not general (Giacomin et al. 2024)
 - Neglect nonlinear phenomena (zonal flows) => severely affect emerging turbulence

• Can we build a scalable surrogate model for 5D plasma turbulence modelling?

GyroSwin

- •5D local window attention (Liu et al. 2021)
- Multitask learning
 - •5D distribution function
 - •3D electrostatic potential fields
 - Scalar heat flux time trace
- Inductive Biases
 - Channelwise mode separation
 - Latent integral modules

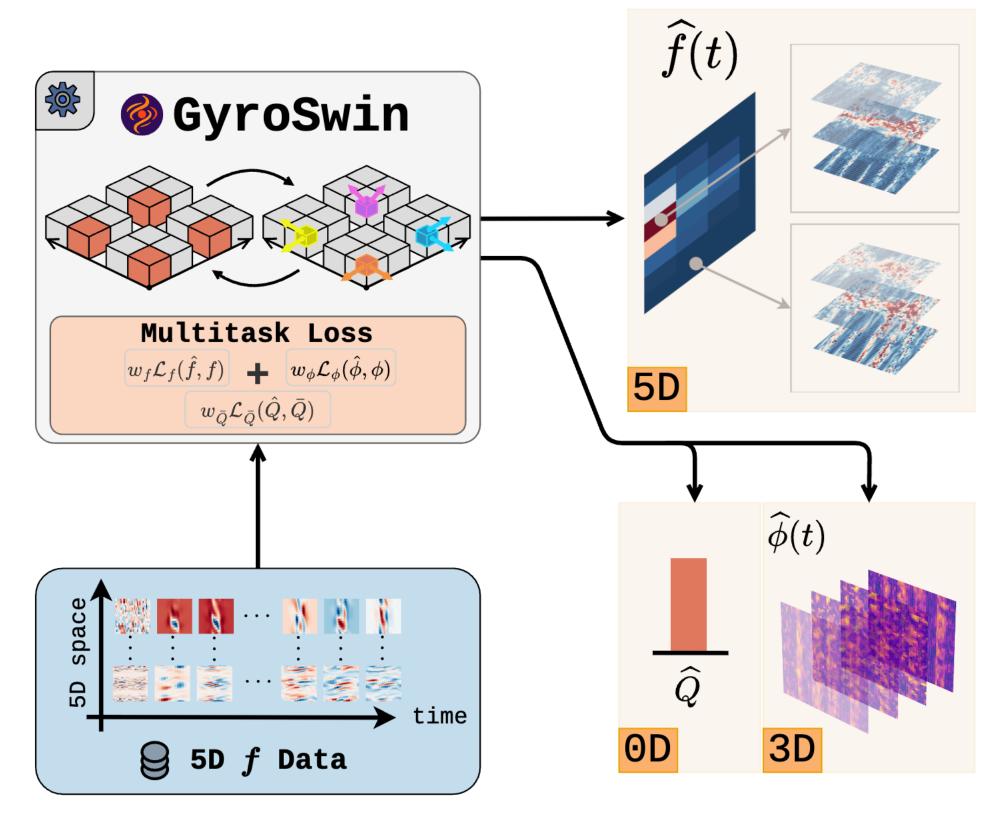


Figure: GyroSwin models the 5D distribution function of nonlinear gyrokinetics and incorporates integration blocks to predict 3D electrostatic potential fields and scalar heat flux.

Experiment design

- Data Generation using GKW [1]
 - •Consider adiabatic electron approximation (resolution=32x8x16x85x32)
 - •Generate 255 simulations (~6TB) with 4 operating parameters
 - •Small training set (48 sims) for comparisons, large set (241 sims) for scaling experiments
 - •Evaluate on 6 in-distribution (ID) and 5 out-of-distribution (OOD)
- Different surrogate approaches offer different capabilities:

Method	Average Flux	Diagnostics	Zonal Flows	Turbulence
Tabular Regressors, e.g., GPR, MLP	1D→0D	X	×	×
SOTA Reduced Numerical modelling, e.g., QL	$3D\rightarrow 0D$	$3D\rightarrow 1D$	×	×
Neural Surrogates, e.g. GyroSwin (Ours)	5D→0D	5D→1D	5D→1D	5D→5D

Table: Comparison of different surrogate approaches by capabilities.

Turbulence modelling & average flux

N # - 41 1			f		$ar{Q}$			
Method	Input		OOD (↑)	ID (↓)	OOD (↓)			
SOTA Reduced Numerical modelling								
QL (Bourdelle et al., 2007)	3D	n/a	n/a	89.53 ± 11.76	95.22 ± 21.57			
Classical Regression Techniques								
GPR (Hornsby et al., 2024)	0D	n/a	n/a	43.82 ± 10.84	59.28 ± 17.55			
MLP	0D	n/a	n/a	50.50 ± 10.79	61.98 ± 18.41			
Neural Surrogate Models (48 simulations)								
FNO (Li et al., 2021)	3D	9.33 ± 0.56	9.20 ± 0.58	119.88 ± 13.15	124.96 ± 23.27			
PointNet (Qi et al., 2016)	5D	7.33 ± 0.21	7.40 ± 0.24	119.93 ± 13.15	125.05 ± 23.29			
Transolver (Wu et al., 2024)	5D	9.83 ± 1.40	10.80 ± 1.46	119.93 ± 13.15	125.05 ± 23.28			
ViT (Dosovitskiy et al., 2021)	5D	16.83 ± 1.49	19.20 ± 1.36	119.63 ± 13.13	125.13 ± 23.29			
GyroSwin (Ours)	5D	26.50 ± 3.55	28.60 ± 8.82	67.68 ± 10.28	70.48 ± 17.21			
Scaling GyroSwin to 241 simulations								
GyroSwin _{Small} (Ours)	5D	98.00 ± 27.53	76.40 ± 17.60	23.72 ± 4.05	53.54 ± 18.10			
GyroSwin _{Medium} (Ours)	5D	94.17 ± 21.96	91.20 ± 18.61	37.24 ± 9.60	44.17 ± 17.68			
GyroSwin _{Large} (Ours)	5D	110.33 ± 19.74	111.80 ± 23.86	18.35 ± 1.56	26.43 ± 9.49			

Table: Evaluation for 5D turbulence modelling and nonlinear heat flux prediction. We evaluate all methods across six ID and five OOD simulations. For Q we report RMSE of time-averaged predictions after an autoregressive rollout. For f we report correlation time for autoregressive rollouts with threshold $\tau = 0.1$. Higher correlation time is better.

Conclusions

- GyroSwin is the first 5D neural surrogate for nonlinear Gyrokinetics
 - 1. Scalable: Based on local window attention
 - 2. Efficiency: Three orders of magnitude faster than nonlinear numerical code GKW
 - 3. **Stable rollouts**: Trained on MSE on next time step. During inference model is rolled out for over 100 time steps without diverging.

