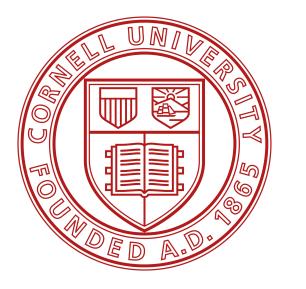
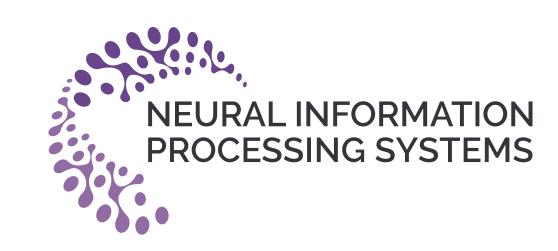
MultiScale Contextual Bandits for Long Term Objectives

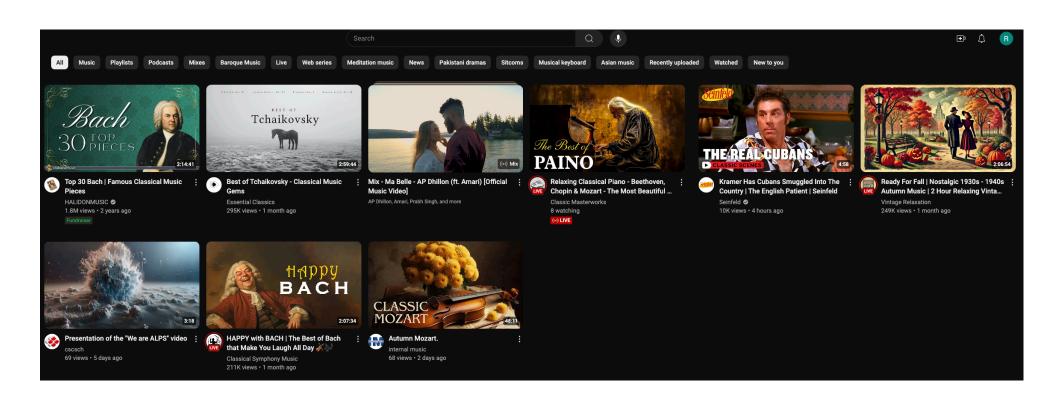
Richa Rastogi, Yuta Saito, Thorsten Joachims Cornell University





Motivation

In many interactive AI systems, (recommender, conversational systems), there
is abundant short term feedback (e.g., clicks, generated response quality)



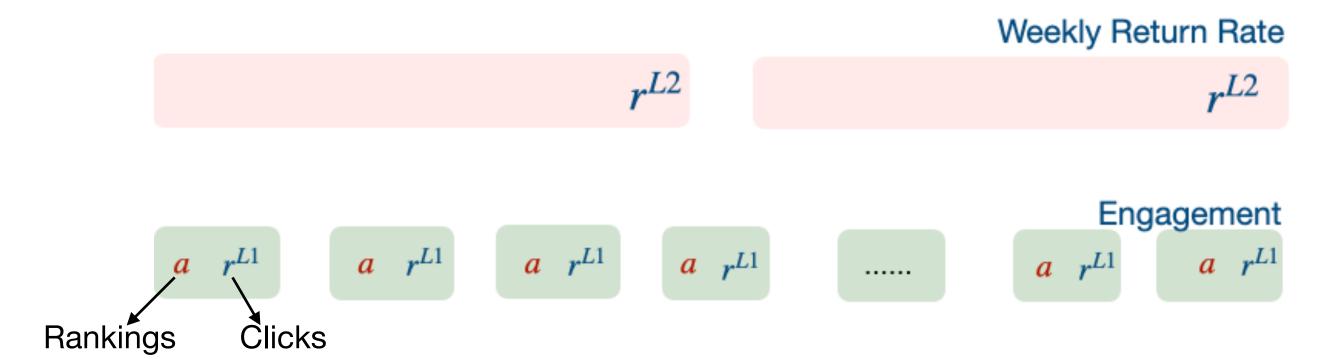
User Retention

Beneficial dialogue outcomes

 Prior work shows that optimizing for short term feedback does not necessarily achieve the desired long term objective (e.g., clickbait feeds do not lead to user retention)

Motivation

A key problem — long-term feedback is at a different timescale than the short-term interventions

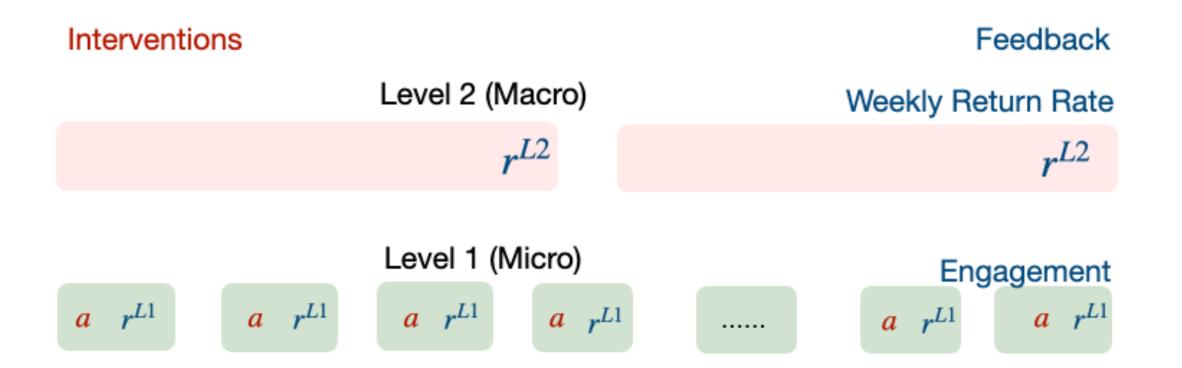


We address it by contextually reconciling this disconnect in timescales

MultiScale Policy Framework

Consider two levels

- A micro level that operates at faster timescale, e.g., clicks, response quality
- A macro level that operates at slower timescale, e.g., user retention

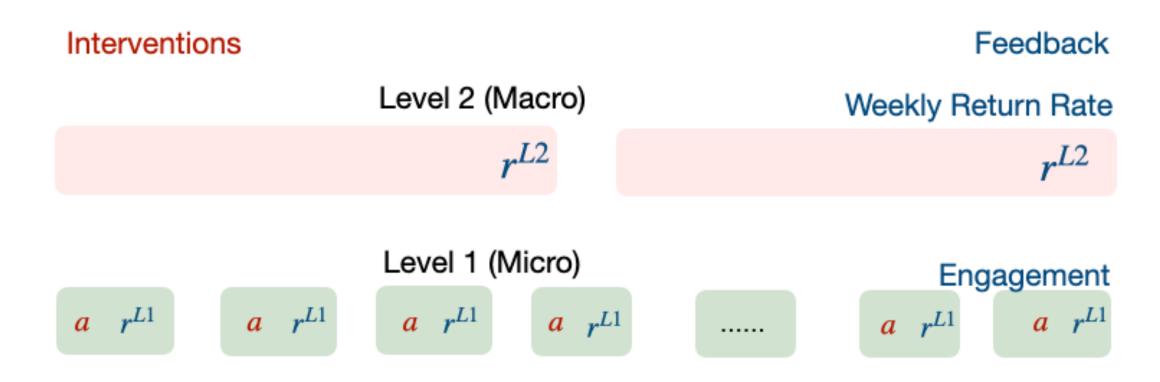


MultiScale Policy Framework

$$\pi^{L2*} \leftarrow \underset{\pi \in \Pi}{\operatorname{arg max}} V^{L2}(\pi) \qquad \text{Hard} \qquad \underset{\text{Level 2 (Macro)}}{\operatorname{Level 2 (Macro)}} \qquad \underset{\text{Weekly Return Rate}}{\operatorname{weekly Return Rate}} \\ \pi^{L1*} \leftarrow \underset{\pi \in \Pi}{\operatorname{arg max}} V^{L1}(\pi) \qquad \underset{\pi \in \Pi}{\operatorname{Easy}} \qquad \underset{\text{a} r^{L1}}{\operatorname{a} r^{L1}} \qquad \underset{\text{$$

Even though $V^{L2}(\pi^{L1^*}) < V^{L2}(\pi^{L2^*})$, π^{L1^*} is typically much better than a random policy from Π

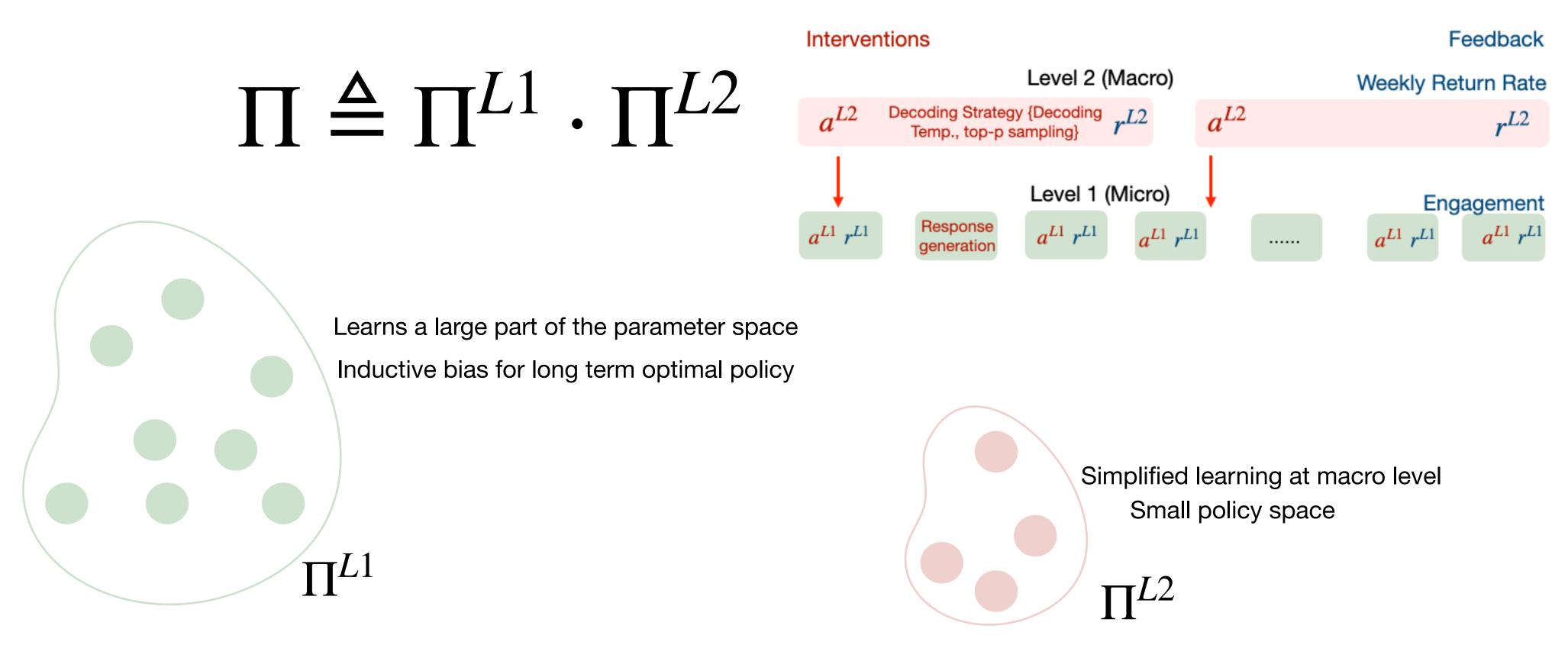
MultiScale Policy Framework



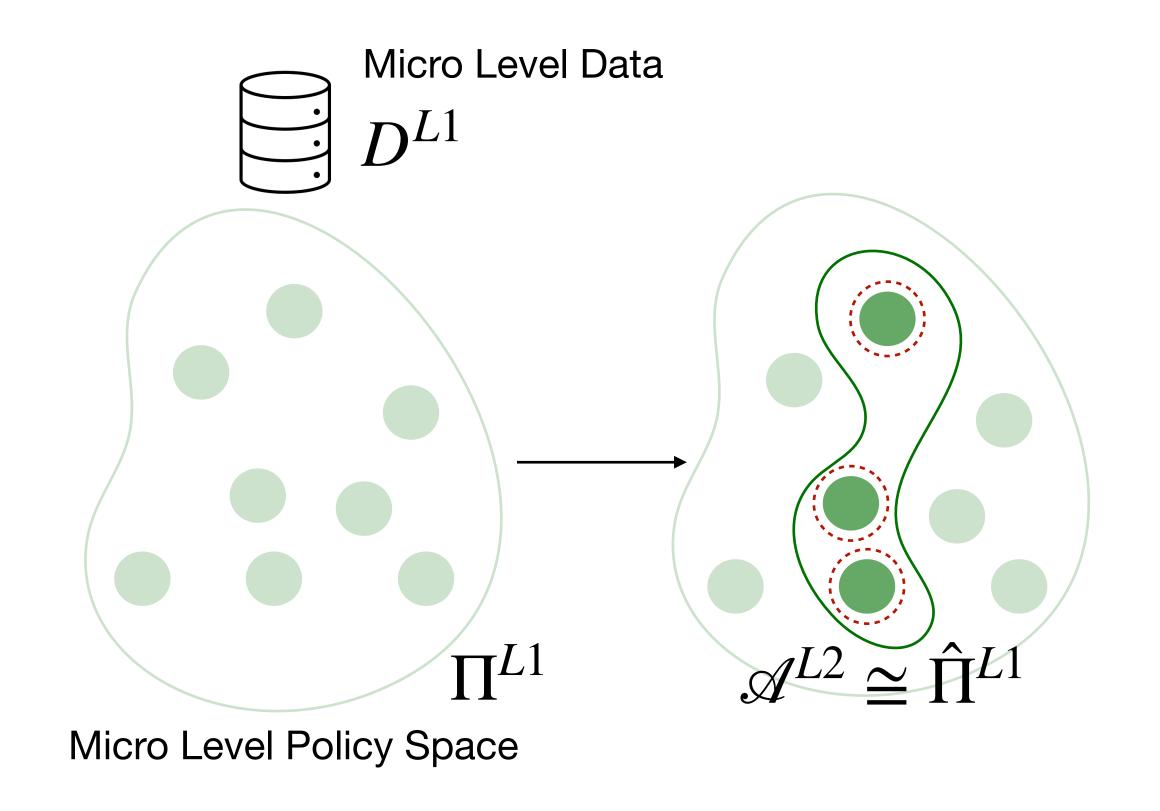
Can we exploit feedback at the micro level to learn the long term optimal policy?

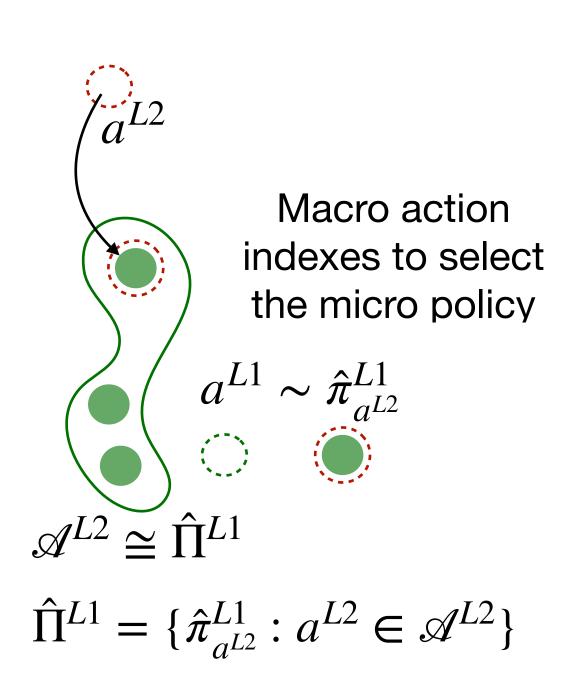
MultiScale Policies

Factorization of policies

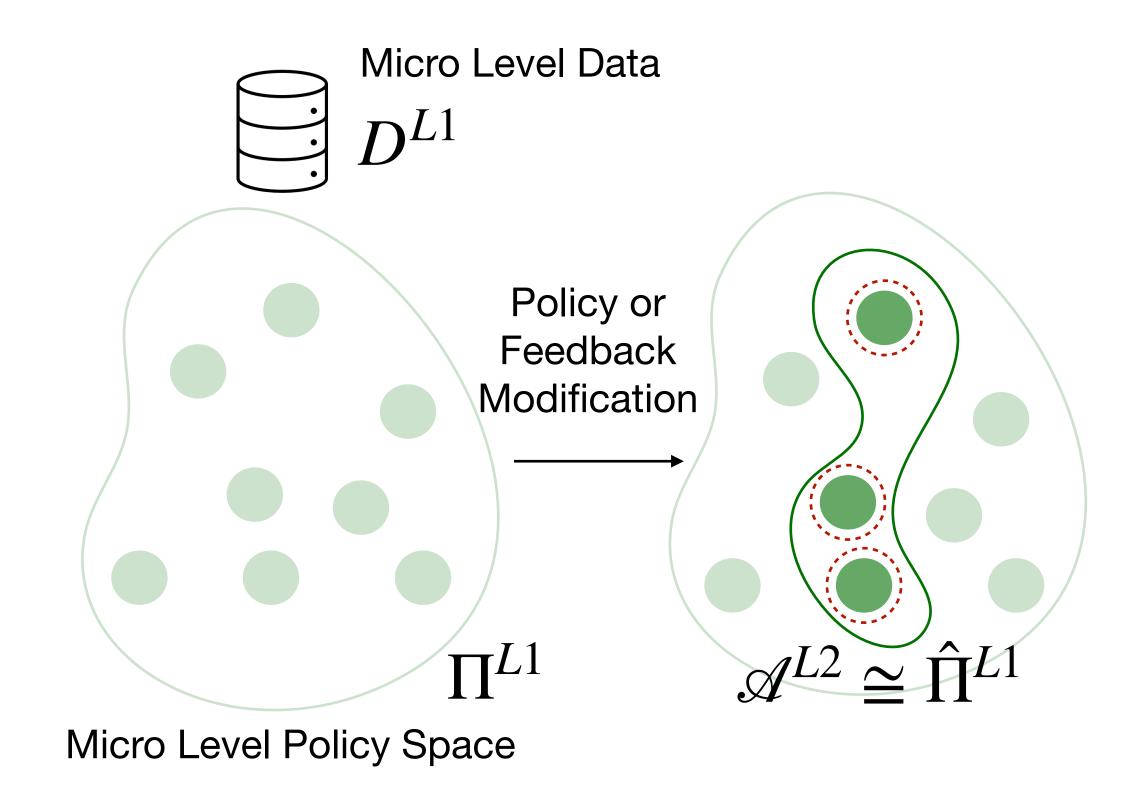


Policy Learning at micro level





Policy Learning at micro level



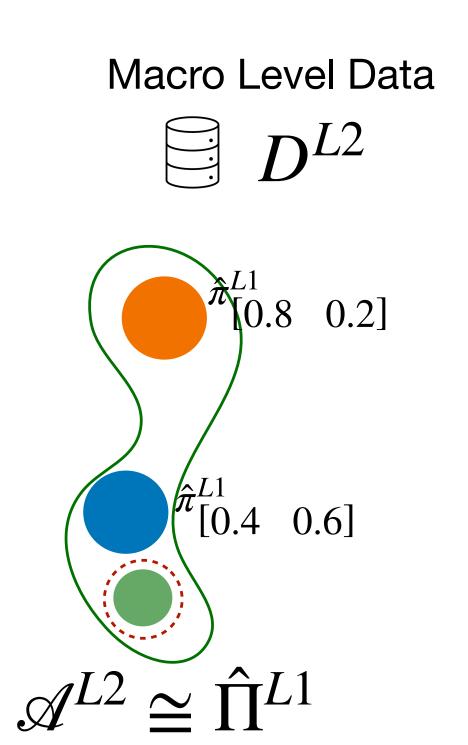
Example:

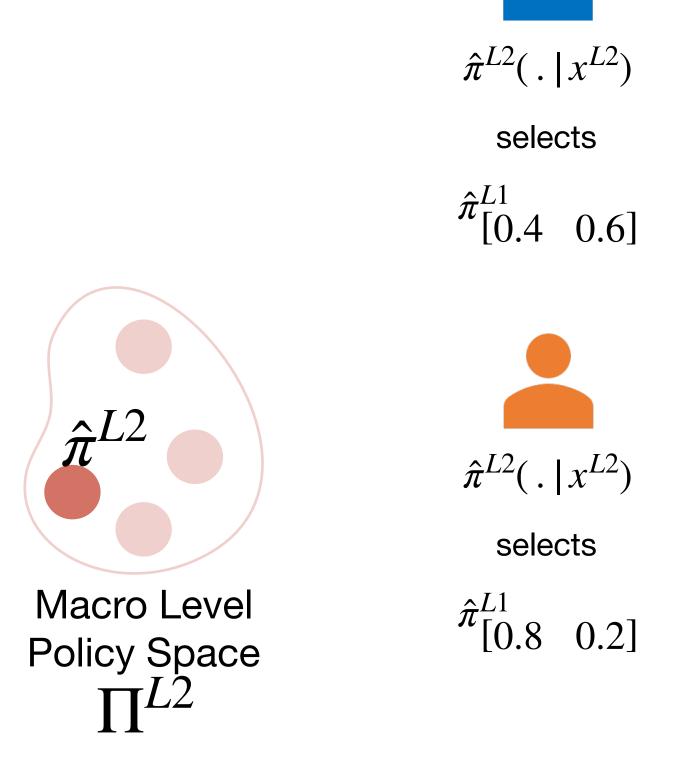
$$\begin{bmatrix} \text{Clicks} \\ \text{Likes} \end{bmatrix} \qquad \begin{bmatrix} 0.8 & 0.2 \end{bmatrix} \begin{bmatrix} \text{Clicks} \\ \text{Likes} \end{bmatrix}$$

• • •

$$\mathcal{A}^{L2} \cong \hat{\Pi}^{L1} = \{\hat{\pi}_{[0.8}^{L1} \quad 0.2], \hat{\pi}_{[0.4}^{L1} \quad 0.6], \dots\}$$

Policy Learning at macro level





MultiScale Contextual Bandits Algorithm

Algorithm 1 MultiScale Training: Off-Policy Contextual Bandits

Procedure PolicyLearning (π_0^{L2}, π_0^{L1})

Collect Micro Logged dataset $D^{L1} := \{(x_i^{L1}, a_i^{L1}, r_i^{L1}, p_i^{L1})\}_{i=1}^{n^{L1}} \sim \pi_0^{L1}$ Learn Micro policies $\hat{\Pi}^{L1}$ (Eq. (5) or (6) using D^{L1})

MultiScale Contextual Bandits Algorithm

Algorithm 1 MultiScale Training: Off-Policy Contextual Bandits

```
Procedure PolicyLearning(\pi_0^{L2}, \pi_0^{L1})
```

```
Collect Micro Logged dataset D^{L1} := \{(x_i^{L1}, a_i^{L1}, r_i^{L1}, p_i^{L1})\}_{i=1}^{n^{L1}} \sim \pi_0^{L1}
```

Learn Micro policies $\hat{\Pi}^{L1}$ (Eq. (5) or (6) using D^{L1})

Collect Macro Logged dataset
$$D^{L2} := \{(x_j^{L2}, a_j^{L2}, r_j^{L2}, p_j^{L2})\}_{j=1}^{n^{L2}} \sim \pi_0^{L2}$$

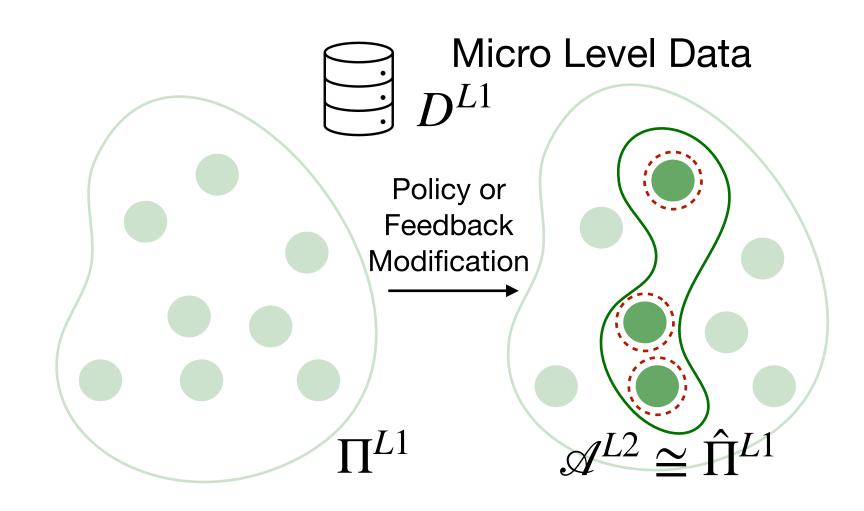
Learn Macro Policy $\hat{\pi}^{L2} \leftarrow \arg\max_{\pi^{L2}} \hat{V}^{L2}(\pi^{L2}; D^{L2})$ (Eq. (7))

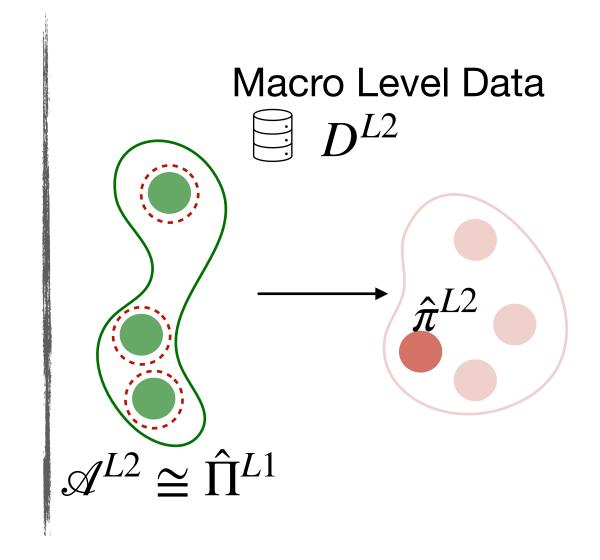
return learned policies $\hat{\pi}^{L2}$, $\hat{\Pi}^{L1}$

This procedure can be recursively called for extending to arbitrary number of levels

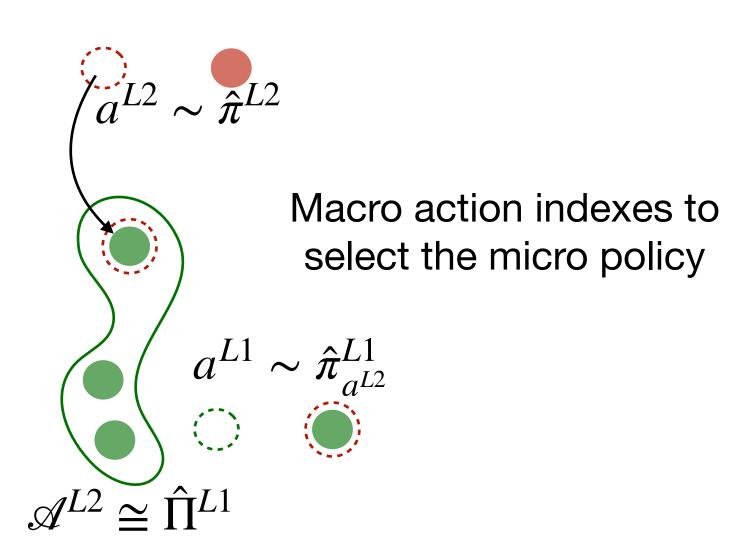
MultiScale Contextual Bandits

- Training
 - Bottom up



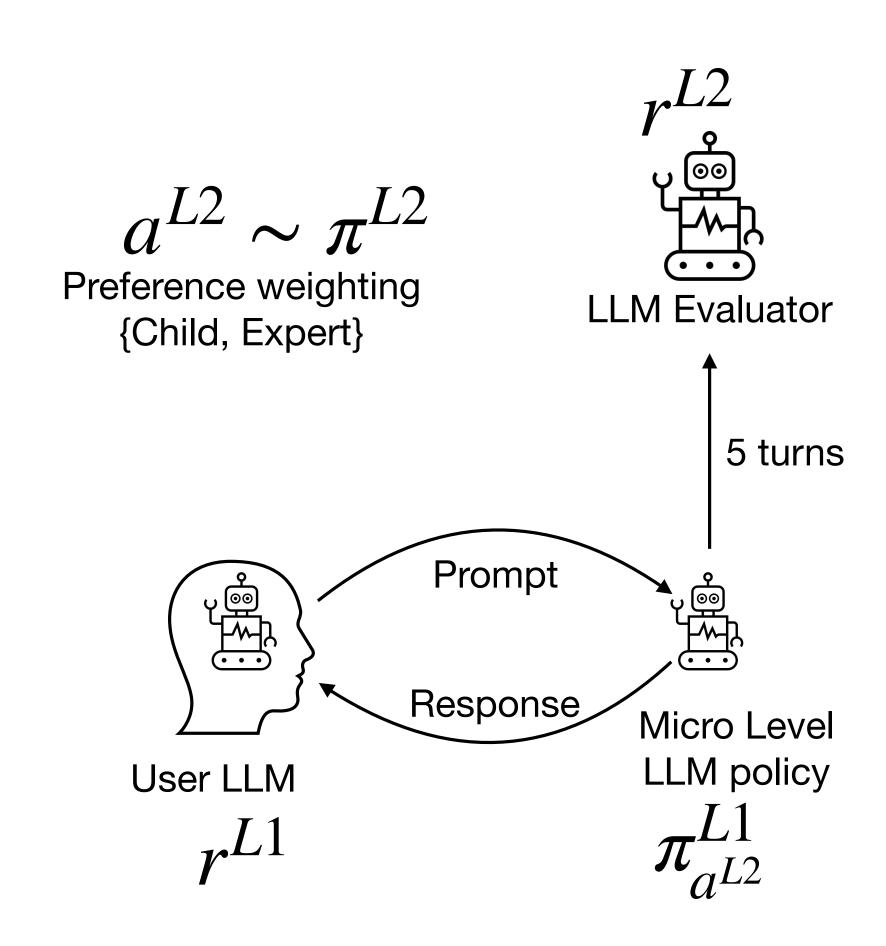


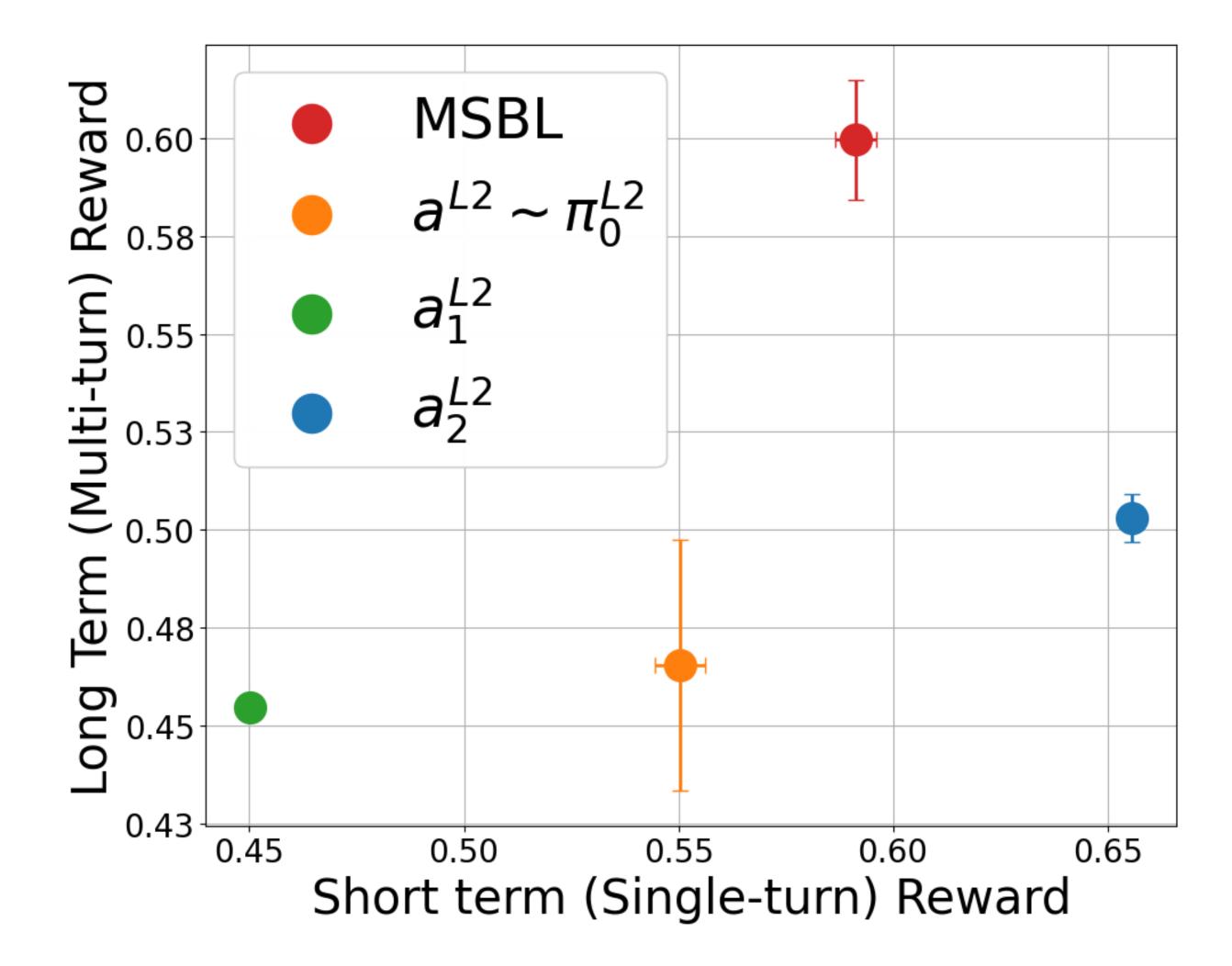
- Inference
 - Top down



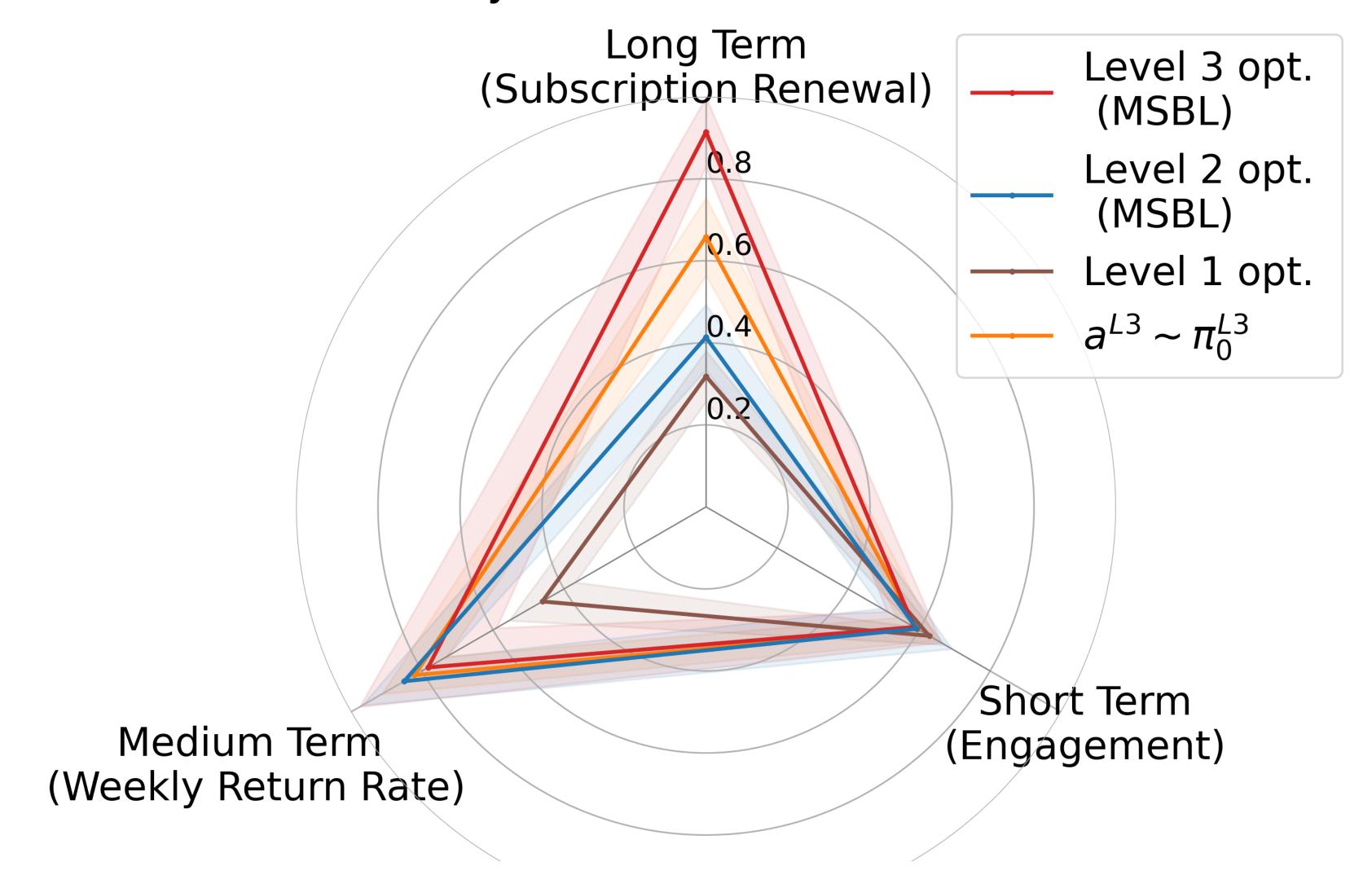
- Multi turn Conversation
- Conversational recommender system
- Large Scale Recommender System

Multi turn Conversation

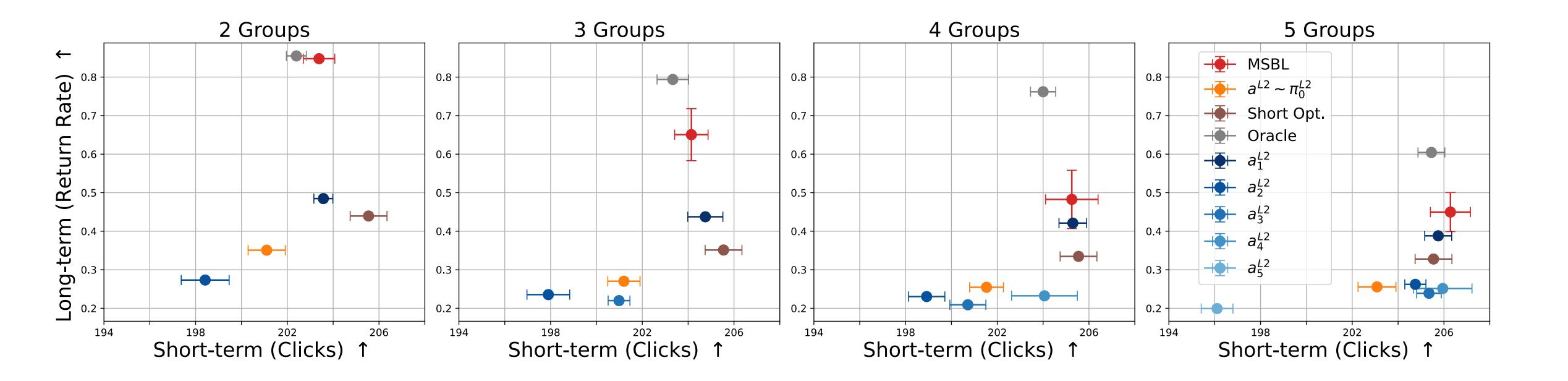




Conversational Recommender System



Large Scale Recommender System



Summary

- Introduce a principled framework to optimize for long term objectives.
- Motivated by using plentiful short-term data for faster learning with scarcer long term feedback
- We discuss two ways policy and feedback modification to learn a family of policies at micro level.
- Propose a practical bandit algorithm for recursively learning policies at multiple interdependent levels.
- Checkout the paper for more results and analysis PAC Bayesian motivation, updating micro and macro policies after deployment when new data is available, scaling action space and more!