Aligning Transformers with Continuous Feedback via Energy Rank Alignment

Shriram Chennakesavalu, Frank Hu, Sebastian Ibarraran, and Grant M. Rotskoff

NeurlPS 2025

Chemistry Language Models

Foundation Models for Molecular Generation

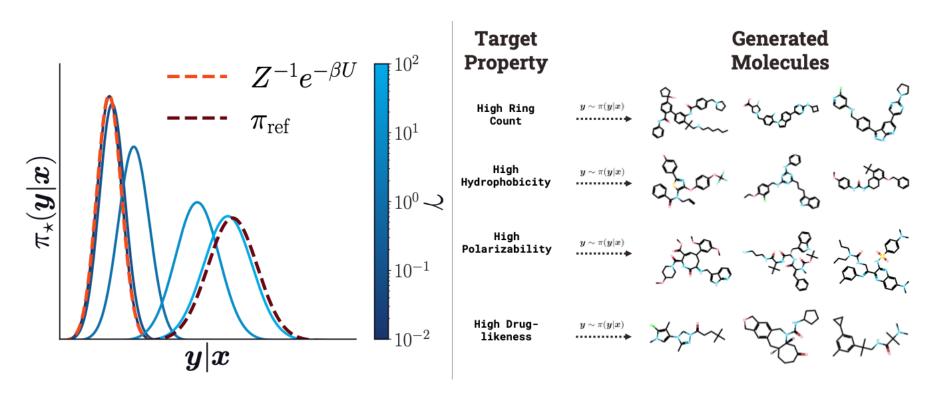
Molecular Transformer (2019):

Input: reactants-reagents (atom-wise tokenization)

Br c 1 c c c 2 ...c(c1)c1cc3c4ccccc4c4ccccc4c3cc1n2-c1ccc2c(c1)c1ccccc1n2-c1ccccc1.CCO. Cc1ccccc1.OB(O)c1ccc2ccc3cccnc3c2n1.c1ccc([PH](c2cccc2)(c2cccc2)[Pd]([PH](c2cccc2)(c

...2c3cccc3c3cc(-n4c5ccc(-

c6ccc7ccc8cccnc8c7n6)cc5c5cc6c7ccccc7c7ccccc7c6cc54)ccc32)cc1

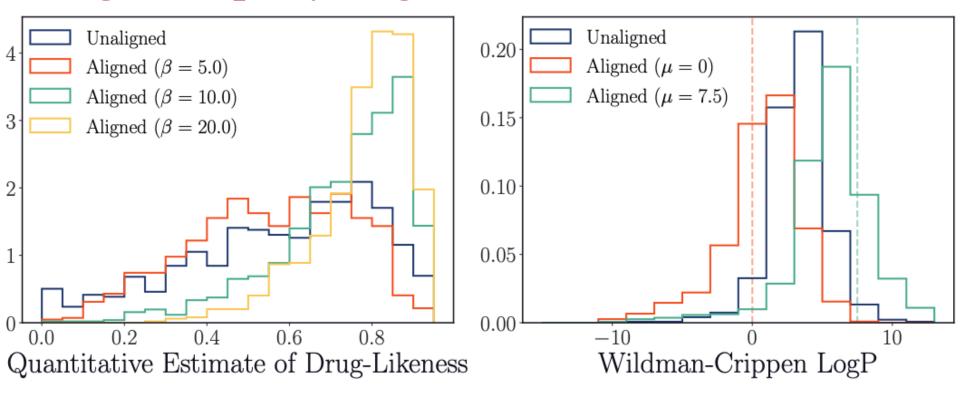

Target: most likely products

Schwaller et al., ACS Cent Sci, 2019

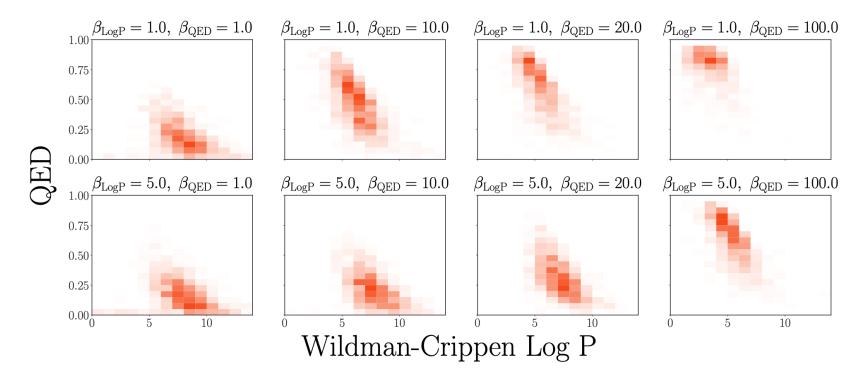
Energy Rank Alignment (ERA)

- Simple gradient-based objective
- Explicitly incorporates a reward/energy function
- Avoids greedy policies
- Controllable regularization
- State-of-the-art performance on molecular generation benchmarks

Theoretical Framework

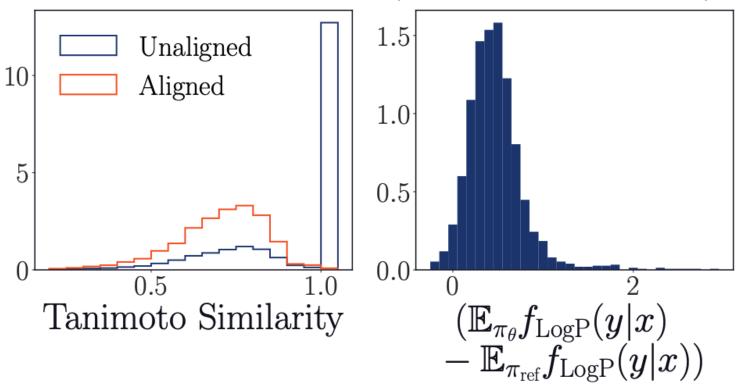


Experiments


Molecular Generation

- Foundation model: transformer trained on 2.4M ChEMBL SMILES
- Focused on easily computed *in silico* oracles
 - RDKit: QED, hydrophobicity, ring count, Tanimoto similarity
 - Docking: random forest predictors of docking scores against two kinase targets GSK3β and JNK3
- Tested both unprompted (BOS token only) and prompted (conditioned on a SMILES) alignment

Single-Property Alignment



Multi-Property Alignment

Prompted Multi-Property Alignment

Multienergy Alignment (LogP and Tanimoto)

Docking Benchmarks

• Generate more diverse molecules (lower IntDiv) with higher bioactivities

	$GSK3\beta$ top-100		JNK3 top-100	
	mean score	IntDiv	mean score	IntDiv
ERA	0.996 ± 0.000	0.219 ± 0.002	0.987 ± 0.001	0.264 ± 0.005
MolRL-MGPT	1.000 ± 0.000	0.362 ± 0.015	0.961 ± 0.010	0.372 ± 0.025
GFlowNet	0.649 ± 0.072	0.715 ± 0.104	0.437 ± 0.219	0.716 ± 0.145
GraphGA	0.919 ± 0.016	0.365 ± 0.024	0.875 ± 0.025	0.380 ± 0.015
JT-VAE	0.235 ± 0.083	0.770 ± 0.067	0.159 ± 0.040	0.781 ± 0.127
REINVENT	0.965 ± 0.011	0.308 ± 0.035	0.942 ± 0.019	0.368 ± 0.021

Acknowledgements

Yinuo Ren
Ph.D. (Institute for Computational and
Mathmatical Engineering)

Andy Mitchell
Ph.D. (Chemistry)

Grant Rotskoff
Assistant Professor of Chemistry

Jérémie Klinger Postdoc

Abigail Park
Ph.D. (Chemistry)

Sherry Li Ph.D. (Chemistry)

Frank Hu
Ph.D. (Chemistry, Markland Lab)

Emmit Pert
Ph.D. (Chemistry)

Josh Liu Ph.D. (Biophysics)

Nick Juntunen
Ph.D. (Chemistry)

Steven Dunne Ph.D. (Biophysics)

Wenhao Gao Postdoc

