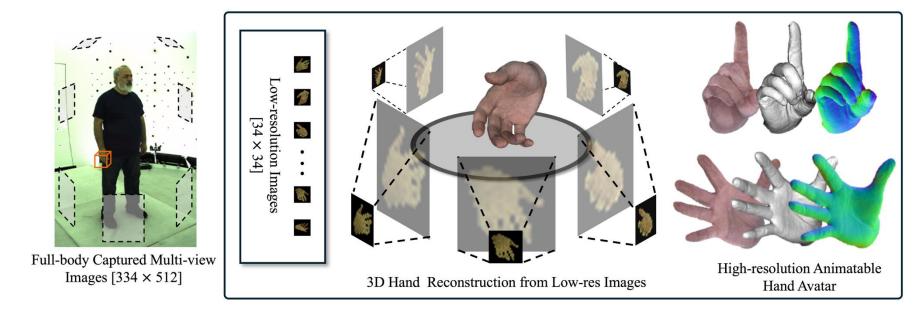
SRHand

Super-Resolving Hand Images and 3D Shapes via View/Pose-aware Neural Image Representations and Explicit 3D Meshes

Minje Kim and Tae-Kyun Kim


NIPS 2025

Introduction

Motivation

- 1. Hands usually occupies less than 1.5% of the captured full body image.
- 2. For detail reconstruction, high resoultion images are essential
- 3. In multi-view setup, the resolution of the captured hand region varies (16x16 \sim 48 x48) with human poses and camera positions, making the problem more challenging

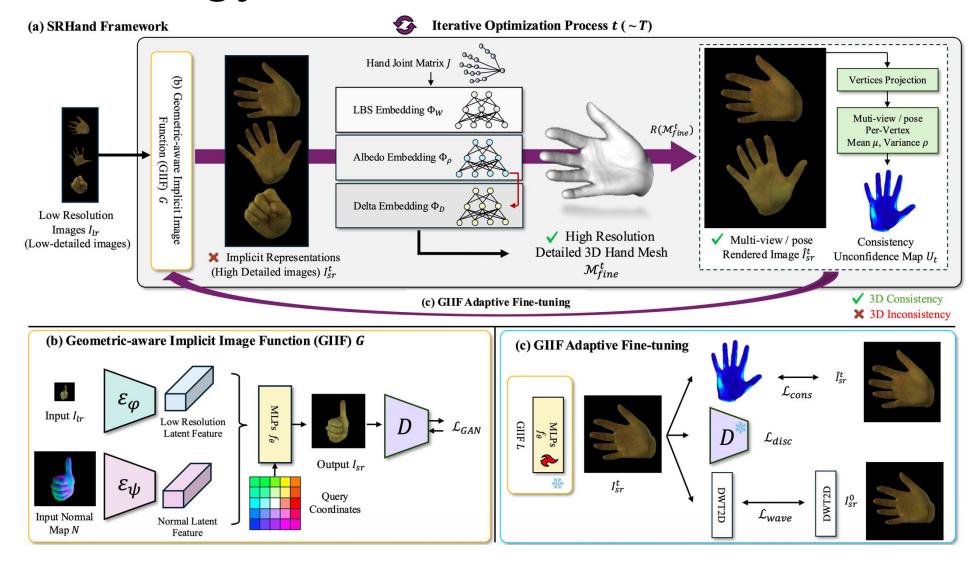
Contribution

- We introduce SRHand, a novel framework that super-resolves both 2D images and 3D shapes by integrating implicit image representations with explicit 3D meshes
- We propose a geometric-aware implicit image function (GIIF), that
 conditions implicit neural representations on normal maps while
 leveraging adversarial learning to enhance texture fidelity.
- We jointly fine-tune the hand SR module with the 3D reconstruction process to enforce multi-view/pose consistency.

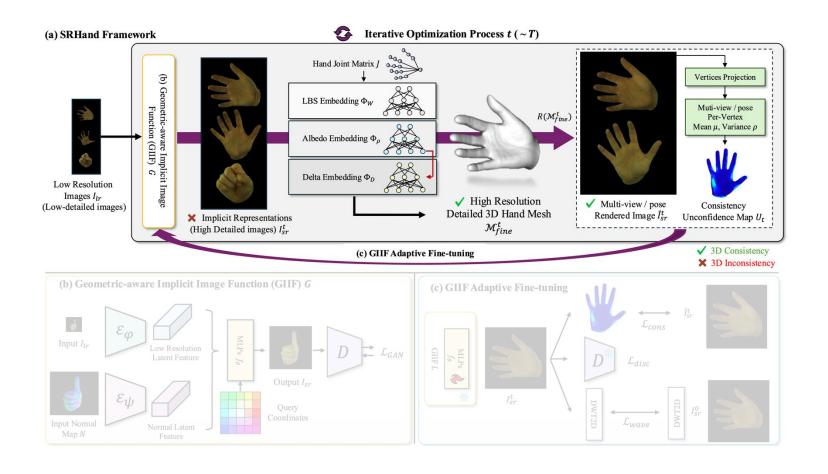
Related Work

Implicit Image Representation

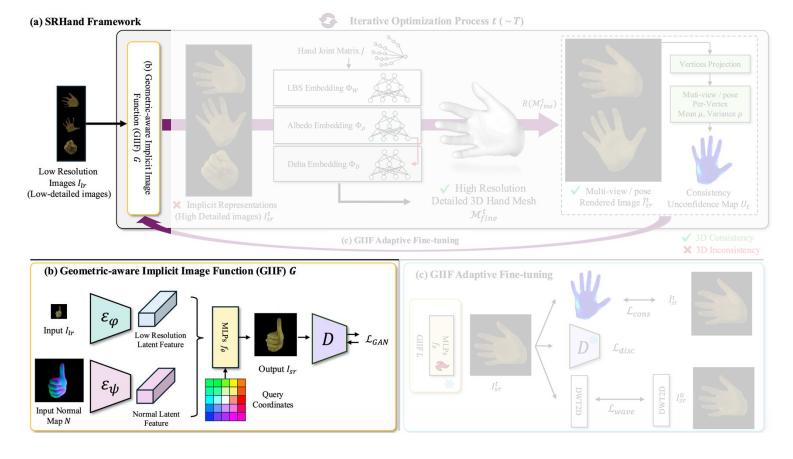
Coordinate-based neural functions, enabling resolution-agnostic inference


$$LIIF(I_{lr}) = f_{\theta}(z, [x, c]), \text{ where } z = E_{\varphi}(I_{lr})$$

Explicit 3D Mesh


Our mesh representation is based on [2], following below formulation.

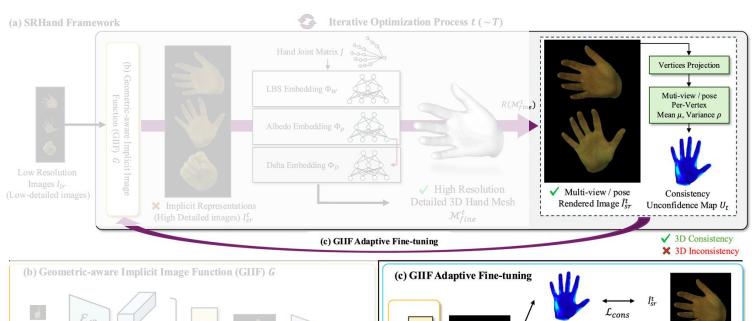
$$R(\pi^{i}|\mathcal{M}_{fine},J) = \Phi_{\rho}(J) \cdot SH(Y,\mathcal{N}'), \text{ where } \mathcal{M}_{fine} = \Omega(\bar{\mathcal{M}}' + \Phi_{D}(J), \Phi_{W}(J), \theta, \beta)$$



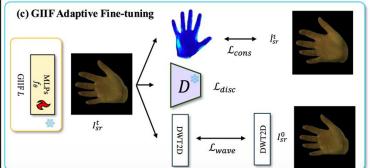
SRHand Pipeline

- 0) LR Images
- 1) Forward SR Module (GIIF)
- 2) 3D Hand Reconstruction
- 3) GIIF Adaptive Fine-tuning
- 4) Re-start 1) process

GIIF (Geometric –aware IIF)


- Why Implicit Image Function?
 - Input resolution can vary!
 - IIF can cover arbitrary scale
- LR latent feature + Normal latent feature

$$\mathbf{f}_{fused} = \mathcal{E}_{\varphi}(I_{lr}). \oplus \mathcal{E}_{\psi}(N)$$


 Decoding through cellcoordinate base

$$I_{sr} = G(I_{lr}, N) = \mathcal{F}_{\theta} \left(\mathbf{f}_{fused}, [x, c] \right)$$

(b) Geometric-aware Implicit Image Function (GIIF) GInput I_{lr} Low Resolution Latent Feature Output I_{sr} Query Coordinates Feature

GIIF Adaptive Fine-tuning

Consistency Loss

$$\mathcal{L}_{cons} = \mathcal{L}_1((R(\mathcal{M}_{fine}) \cdot U^t(Q), I_{sr} \cdot U^t(Q))$$

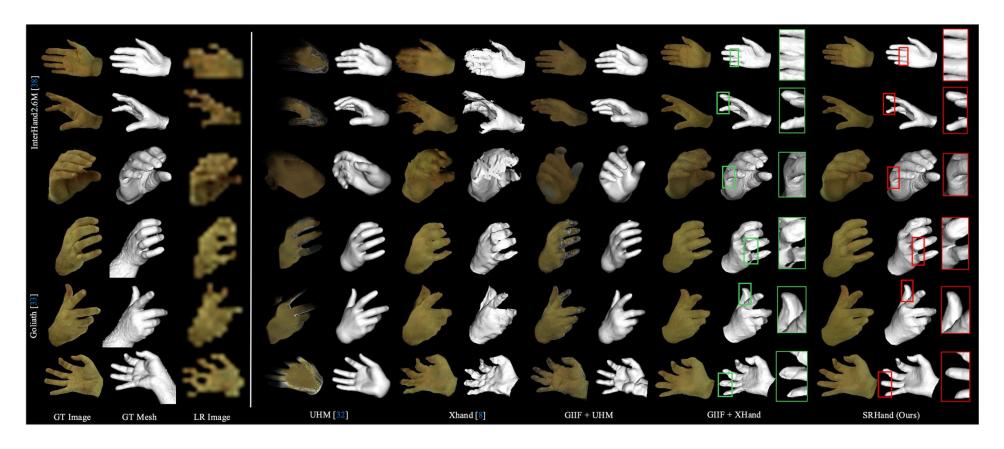
- Frequency Maintenance Loss
 - Through Wavelet Decomp.

$$\mathcal{L}_{wave} = \mathcal{L}_1(\tilde{\phi}(I_{sr}^t), \tilde{\phi}(I_{sr}^0))) + \mathcal{L}_1(\sum \hat{\phi}(I_{sr}^t), \sum \hat{\phi}(I_{sr}^0))$$

Discriminator Loss

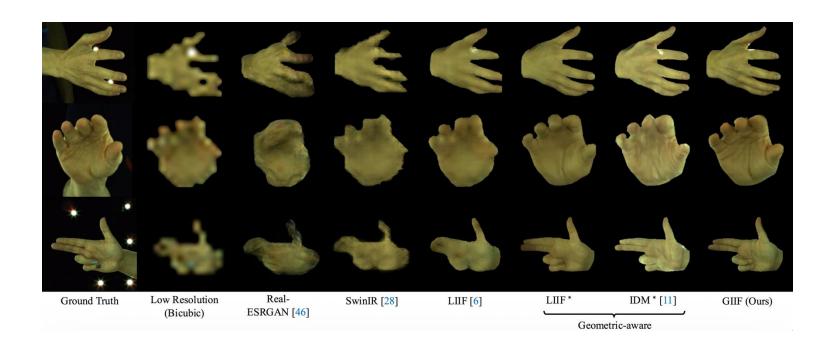
$$\mathcal{L}_{disc} = log(1 - D(I_{sr}^t))$$

Experiments


• 3D Reconstruction from SR Images

SR	3D Recon. Methods	InterHand2.6M [38]			Goliath [33]						
Module		PSNR / LPIPS (SR)	PSNR	LPIPS	P2P (mm)	Incon.	PSNR / LPIPS (SR)	PSNR	LPIPS	P2P (mm)	Incon.
Bicubic	Ours	22.23 / 0.2645	26.44	0.0895	4.01	0.0131	19.17 / 0.3244	22.52	0.1377	5.80	0.0128
LIIF [6]	XHand [10] Ours	27.47 / 0.1063	27.36 27.11	0.0691 0.0755	4.32 3.39	0.0151 0.0151	24.87 / 0.1459	23.64 22.87	0.0984 0.1123	3.34 4.12	0.0146 0.0140
GIIF (w/o ftd.)	UHM [37] XHand Ours	29.96 / 0.0305	22.33 27.71 29.17	0.1522 0.0507 0.0404	72.55 3.43 3.09	0.0067 0.0058	27.91 / 0.0497	23.85 22.76 23.50	0.1319 0.1118 0.0783	24.29 3.70 3.49	0.0084 0.0070
GIIF (w/ ftd.)	XHand Ours	30.03 / 0.0303 30.06 / 0.0302	28.75 29.88	0.0443 0.0362	3.45 2.16	0.0052 0.0050	28.07 / 0.0495 28.09 / 0.0495	21.95 24.31	0.1139 0.0813	3.60 3.50	0.0082 0.0069

Experiments


• 3D Reconstruction from SR Images

Experiments

Hand Image Super-Resolution Results

(a) Experiments are performed with ×16 upscaling. (* denotes the model has been modified with normal map conditioning.)

Methods		PSNR ↑	LPIPS ↓	
Real-ESRGA SwinIR [28] LIIF [6] IDM [11]	AN [46]	22.39 25.51 25.76 14.58	0.2287 0.1552 0.1848 0.3603	
Geometric- aware	LIIF* IDM* GIIF	29.85 21.49 31.60	0.0996 0.0970 0.0637	

(b) Results in (PSNR / LPIPS) of continuous scale trained on \times 16 factor. GIIF achieves best performance in all scaling factors.

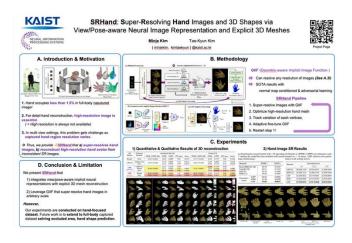
Methods	Upscaling factor						
1110111011	×8	×21.3	×32				
LIIF [6]	28.62/0.1319	23.91/0.2071	21.46/0.2693				
IDM [11]	25.46/0.1215	21.28/0.1796	19.02/0.2426				
LIIF*	30.20/0.0812	29.17/0.0855	28.55/0.0885				
IDM*	22.68/0.0696	22.71/0.0780	22.87/0.0878				
GIIF	32.70/0.0533	31.53/ 0.0606	30.01/0.0640				

Conclusion

• We present SRHand that integrates view/pose-aware implicit neural representations with explicit 3D mesh reconstruction.

 Our approach leverages a geometric-aware implicit image function (GIIF) to super-resolve low-detailed hand images in arbitrary scale.

 Achieves state-of-the-art performance in qualitatively and quantitatively.


Thank you 🙏

Contact: minjekim@kaist.ac.kr

Paper

Project Page

Code

Poster

