A Few Moments Please: Scalable Graphon Learning via Moment Matching

Reza Ramezanpour, Victor M. Tenorio, Antonio G. Marques, Ashutosh Sabharwal, Santiago Segarra

Networks are the fundamental structure for relational data:

- Social interactions
- Wireless Communication Channels

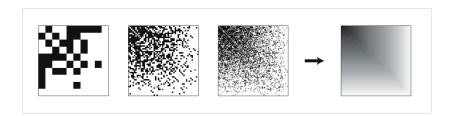
Our Goal: Understand the underlying generative principles of large-scale networks for tasks like:

- Community Detection
- Graph Classification

A Principled Model: The Graphon

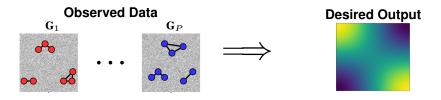
Graphons (Graph Limits) have emerged as a powerful framework.

- A graphon $W:[0,1]^2 \to [0,1]$ is a continuous, generative model for graphs.
- W(x,y) = probability of an edge between latent node positions x and y.
- It provides a resolution-free representation for large networks.



Problem

Given one or more observed graphs $\mathcal{G} = \{G_1, \dots, G_P\}$, assumed to be sampled from an unknown true graphon W^* , how do we accurately and efficiently recover an estimate \hat{W} ?



The Bottleneck: Why is this Hard?

Existing graphon estimation methods face significant challenges:

- Scalability: Many methods (e.g., SAS, USVT) are limited by the sample graph's resolution.
- Complex Alignment: Modern INR-based methods (e.g., IGNR) require estimating latent node variables.
- Costly Optimization: They often rely on minimizing the Gromov-Wasserstein (GW) distance, which has combinatorial complexity.

The Gap: We need an estimator that is **scalable**, **direct** (no latent variables), and **efficient** (no GW distance).

Our Core Idea: Match Moments, Not Nodes

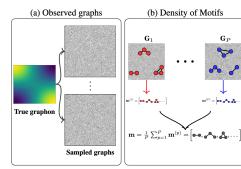
Key Insight

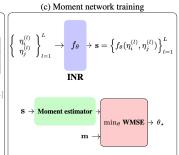
A graphon is uniquely determined by its "moments", the densities of all its subgraphs (motifs).

Our Proposal: Instead of aligning nodes, let's align *moments*.

- ① **Observe:** Compute empirical subgraph counts (m) from the input graph(s) *G*. (Fast, parallelizable)
- **Model:** Represent the graphon \hat{W}_{θ} with an Implicit Neural Rep (INR).
- **Train:** Optimize the INR θ to *directly match* the observed moments.

$$\theta^* = \arg\min_{\theta} \mathsf{Loss}(\hat{\mathbf{m}}(\hat{W}_{\theta}), \mathbf{m})$$





MomentNet Stage 1 - Empirical Moments

Step 1: Computing the density of motifs

- ullet Consider set of motifs $\mathcal{F}:=\{\mathcal{G}_{F_1},\mathcal{G}_{F_2},\ldots,\mathcal{G}_{F_{|\mathcal{F}|}}\}$
- Count occurrences of motifs (using ORCA)
- Calculate empirical motif density vector $\mathbf{m}^{(p)}$ for each graph \mathcal{G}_p
- Overall empirical moment vector $\mathbf{m} \in \mathbb{R}^{|\mathcal{F}|}$

$$\mathbf{m} = \frac{1}{P} \sum_{p=1}^{P} \mathbf{m}^{(p)}$$

Efficiency Gain

- Input graphs are discarded after this stage
- Reduces computational overhead significantly

MomentNet Stage 1 - Empirical Moments

Step 1: Computing the density of motifs

- ullet Consider set of motifs $\mathcal{F}:=\{\mathcal{G}_{F_1},\mathcal{G}_{F_2},\ldots,\mathcal{G}_{F_{|\mathcal{F}|}}\}$
- Count occurrences of motifs (using ORCA)
- Calculate empirical motif density vector $\mathbf{m}^{(p)}$ for each graph \mathcal{G}_p
- Overall empirical moment vector $\mathbf{m} \in \mathbb{R}^{|\mathcal{F}|}$

$$\mathbf{m} = \frac{1}{P} \sum_{p=1}^{P} \mathbf{m}^{(p)}$$

Efficiency Gain

- Input graphs are discarded after this stage
- Reduces computational overhead significantly

MomentNet Stage 2 - Training

Step 2: Training the moment network ($W_{\theta} = f_{\theta}$)

Moment estimator

- Computes estimated induced motif density $t'(\mathcal{G}_F, W_{\theta})$
- Approximation via Monte Carlo with L samples

$$\hat{t}'(\mathcal{G}_F, f_{\theta}) = \frac{1}{L} \sum_{l=1}^{L} \left[\prod_{(i,j) \in \mathcal{E}_F} f_{\theta}(\eta_i^{(l)}, \eta_j^{(l)}) \prod_{(i,j) \notin \mathcal{E}_F} (1 - f_{\theta}(\eta_i^{(l)}, \eta_j^{(l)})) \right]$$

ullet The estimator $\hat{t}'(\mathcal{G}_F,\,W_{ heta})$ is differentiable w.r.t. heta

Loss Function: Weighted Mean Squared Error

$$L(\theta) = \sum_{i=1}^{|\mathcal{F}|} w_i \left(m_i - \hat{m}_i(\theta) \right)^2$$

- o Minimizes discrepancy between ${\bf m}$ and estimated moments $\hat{{\bf m}}(\theta)$
- Inverse weighting $w_i = 1/m_i$ balances motif frequency

- Assumptions
 - \Rightarrow INR approximates empirical motif densities (Universal Approx.)

Theorem: Cut Distance Probabilistic Bound

For
$$N>\frac{k(k-1)}{\delta_M}$$
, if $F_k\cdot 2\exp\left(-\frac{PN}{4k^2}\left(\frac{\delta_M}{2}-\frac{k(k-1)}{2N}\right)^2\right)<\zeta$ where $\zeta>0$ is a confidence level and $\delta_M>0$ is the motif deviation threshold. With prob. at least $1-\zeta$,

$$d_{\mathsf{cut}}(\hat{W}_{\theta}, W^*) < \eta$$

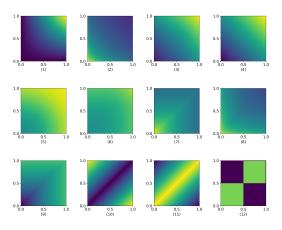
- Result
 - \Rightarrow With probability 1ζ the cut distance is bounded
 - \Rightarrow Probability constraint decays exponentially with P, N
 - \Rightarrow Motif fidelity in data implies proximity to W^* in cut distance

Numerical Experiments - Synthetic Graphons I RICE

From each graphon, we then generate 10 distinct graphs of varying sizes, specifically containing $\{75,100,\ldots,300\}$ nodes respectively. The 13 graphons used are:

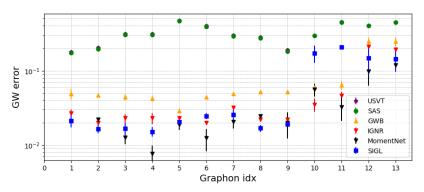
	W(x,y)
1	xy
2	$e^{(-(x^{0.7}+y^{0.7}))}$
3	$\frac{1}{4}(x^2+y^2+\sqrt{x}+\sqrt{y})$
4	$\frac{1}{2}(x+y)$
5	$(1+e^{(-2(x^2+y^2))})^{-1}$
6	$(1 + e^{(-\max\{x,y\}^2 - \min\{x,y\}^4)})^{-1}$
7	$e^{(-\max\{x,y\}^{0.75})}$
8	$e^{(-\frac{1}{2}(\min\{x,y\}+\sqrt{x}+\sqrt{y}))}$
9	$\log(1 + \max\{x, y\})$
10	x-y
11	1 - x - y
12	$0.8\mathbf{I}_2\otimes\mathbb{1}_{[0,\frac{1}{2}]^2}$
13	$0.8(1 - \mathbf{I}_2) \otimes \mathbb{1}_{[0, \frac{1}{2}]^2}$

Numerical Experiments - Synthetic Graphons I RICE



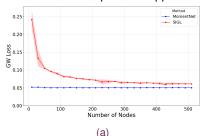
Numerical Experiments - Synthetic Graphons III RICE

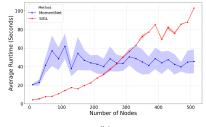
- Performance comparison
- Metric: GW loss (distance between estimated and true graphon)
- Results
 - ⇒ MomentNet outperforms SOTA in 9/13 graphons
 - ⇒ Shows robustness across different graphon types



Numerical Experiments - Scalability

- Scalability for Graphon $W(\eta_i, \eta_j) = 0.5 + 0.1 \cos(\pi \eta_i) \cos(\pi \eta_j)$
 - ⇒ Comparison with SOTA baseline SIGL [Azizpour24]
- GW Loss vs. Node Count N (a)
 - \Rightarrow MomentNet consistently low GW loss across all N
 - \Rightarrow SIGL matches MomentNet for very large N
- Runtime vs. Node Count N (b)
 - ⇒ MomentNet's runtime increases only modestly
 - ⇒ SIGL's runtime still escalates sharply
- MomentNet: practical approach for large-scale networks





MomentMixup - Introduction

- Data augmentation: crucial for generalization in graph learning
- Mixup
 - ⇒ New samples by combination of existing
 - \Rightarrow Synthetic sample (\tilde{x}, \tilde{y}) as

$$\tilde{x} = \lambda x_i + (1 - \lambda)x_j$$
; $\tilde{y} = \lambda y_i + (1 - \lambda)y_j$

- Mixup in graphs
 - ⇒ Graph structure non-Euclidean
 - ⇒ Mixup is challenging
 - Previous graph mixup methods
 - ⇒ G-Mixup [Han22] operate in graphon domain
 - ⇒ GraphMAD [Navarro22] operate in latent space
 - MomentMixup approach
 - ⇒ Mixup in moment space
 - \Rightarrow Uses MomentNet to obtain the mixed graphon W_{aug}



- 1. Compute Class Moments
 - \Rightarrow \mathbf{m}_c : average moment vector for each class c
- 2. Target Moment and Label
 - \Rightarrow Target mixed moment $\mathbf{m}_{target} = \sum \alpha_c \mathbf{m}_c$
 - \Rightarrow Target mixed label $y_{target} = \sum \alpha_c y_c$
- 3. Train MomentNet
 - \Rightarrow Train MomentNet with $\mathbf{m}_{target} \rightarrow$ mixed graphon W_{aug}
- 4. Sample and Augment
 - \Rightarrow Generate N_{graphs} new samples \mathcal{G}_{new} from W_{aug}
 - \Rightarrow Integrate $(\mathcal{G}_{new}, y_{target})$ into the training set

- 1. Compute Class Moments
 - \Rightarrow \mathbf{m}_c : average moment vector for each class c
- 2. Target Moment and Label
 - \Rightarrow Target mixed moment $\mathbf{m}_{target} = \sum \alpha_c \mathbf{m}_c$
 - \Rightarrow Target mixed label $y_{target} = \sum \alpha_c y_c$
- 3. Train MomentNet
 - \Rightarrow Train MomentNet with $\mathbf{m}_{target} \rightarrow$ mixed graphon W_{aug}
- 4. Sample and Augment
 - \Rightarrow Generate N_{graphs} new samples \mathcal{G}_{new} from W_{aug}
 - \Rightarrow Integrate $(\mathcal{G}_{new}, y_{target})$ into the training set

- 1. Compute Class Moments
 - \Rightarrow \mathbf{m}_c : average moment vector for each class c
- 2. Target Moment and Label
 - \Rightarrow Target mixed moment $\mathbf{m}_{target} = \sum \alpha_c \mathbf{m}_c$
 - \Rightarrow Target mixed label $y_{target} = \sum \alpha_c y_c$
- 3. Train MomentNet
 - \Rightarrow Train MomentNet with $\mathbf{m}_{target} \rightarrow$ mixed graphon W_{aug}
- 4. Sample and Augment
 - \Rightarrow Generate N_{graphs} new samples \mathcal{G}_{new} from W_{aug}
 - \Rightarrow Integrate $(\mathcal{G}_{new}, y_{target})$ into the training set

- 1. Compute Class Moments
 - \Rightarrow \mathbf{m}_c : average moment vector for each class c
- 2. Target Moment and Label
 - \Rightarrow Target mixed moment $\mathbf{m}_{target} = \sum \alpha_c \mathbf{m}_c$
 - \Rightarrow Target mixed label $y_{target} = \sum \alpha_c y_c$
- 3. Train MomentNet
 - \Rightarrow Train MomentNet with $\mathbf{m}_{target} \rightarrow$ mixed graphon W_{aug}
- 4. Sample and Augment
 - \Rightarrow Generate N_{graphs} new samples \mathcal{G}_{new} from W_{aug}
 - \Rightarrow Integrate $(\mathcal{G}_{new}, y_{target})$ into the training set

Numerical Experiments - MomentMixup

- Graph classification task
 - ⇒ Base classifier: Graph Isomorphism Network (GIN) [Xu18]
 - ⇒ Metric: Classification accuracy on the test set
- Results
 - ⇒ MomentMixup better performance over standard G-Mixup
 - \Rightarrow Shows a clear advantage on datasets with smaller graphs (AIDS)

Dataset	IMDB-B	IMDB-M	REDD-B	AIDS		
#graphs	1000	1500	2000	2000		
#classes	2	3	2	2		
#avg.nodes	19.77	13.00	429.63	15.69		
#avg.edges	96.53	65.94	497.75	16.2		
GIN						
No Augmentation	71.55±3.53	48.83±2.75	91.78±1.09	98±1.2		
G-Mixup w/ USVT	71.94 ± 3.00	50.46 ± 1.49	91.32 ± 1.51	97.8 ± 0.9		
G-Mixup w/ SIGL	$73.95{\pm}2.64$	50.70 ± 1.41	92.25 ±1.41	97.3 ± 1		
MomentMixup	74.30 ±2.70	50.95 ±1.93	91.8 ± 1.2	98.5 ±0.6		

Conclusion & Contributions

Contribution 1: MomentNet

- A scalable graphon estimator that matches moments (motif densities) using an INR.
 - \Rightarrow Novelty: Bypasses latent variable estimation and costly GW distance optimization.
 - \Rightarrow Result: Achieves SOTA accuracy (9/13 graphons) with vastly superior runtime.

Contribution 2: Theoretical Guarantee

- Provides a cut distance bound for the estimation error.
 - ⇒ Links motif fidelity in the data to the final estimation accuracy
 - \Rightarrow Shows error probability decays **exponentially** with data size (P, N)

Contribution 3: MomentMixup

- A new data augmentation technique for graph classification.
 - \Rightarrow **Novelty:** Performs mixup directly in the **moment space**, not the graphor space.
 - ⇒ Result: Outperforms G-Mixup baselines on 3/4 datasets

Conclusion & Contributions

Contribution 1: MomentNet

- A scalable graphon estimator that matches moments (motif densities) using an INR.
 - \Rightarrow Novelty: Bypasses latent variable estimation and costly GW distance optimization.
 - \Rightarrow Result: Achieves SOTA accuracy (9/13 graphons) with vastly superior runtime.

Contribution 2: Theoretical Guarantee

- Provides a cut distance bound for the estimation error.
 - ⇒ Links motif fidelity in the data to the final estimation accuracy.
 - \Rightarrow Shows error probability decays **exponentially** with data size (P, N).

Contribution 3: MomentMixup

- A new data augmentation technique for graph classification
 - \Rightarrow **Novelty:** Performs mixup directly in the **moment space**, not the graphor space.
 - ⇒ Result: Outperforms G-Mixup baselines on 3/4 datasets

Conclusion & Contributions

Contribution 1: MomentNet

- A scalable graphon estimator that matches moments (motif densities) using an INR.
 - \Rightarrow Novelty: Bypasses latent variable estimation and costly GW distance optimization.
 - \Rightarrow Result: Achieves SOTA accuracy (9/13 graphons) with vastly superior runtime.

Contribution 2: Theoretical Guarantee

- Provides a cut distance bound for the estimation error.
 - ⇒ Links motif fidelity in the data to the final estimation accuracy.
 - \Rightarrow Shows error probability decays **exponentially** with data size (P, N).

Contribution 3: MomentMixup

- A new data augmentation technique for graph classification.
 - \Rightarrow Novelty: Performs mixup directly in the $moment\ space,$ not the graphon space.
 - ⇒ **Result:** Outperforms G-Mixup baselines on 3/4 datasets.

Thank You

Paper Link:

