Fully Dynamic Algorithms for Chamfer Distance

Gramoz Goranci, Shaofeng Jiang, Peter Kiss, Eva Szilagyi, Qiaoyuan Yang²

1 University of Vienna
2 Peking University

Center on Frontiers of Computing Studies, Peking University

Chamfer Distance

Input: two sets of points $A, B \subset \mathbb{R}^d$

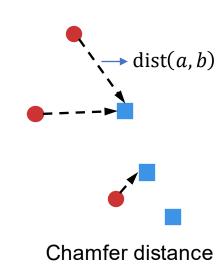
Chamfer Distance:

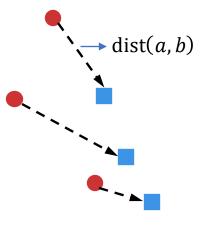
$$\operatorname{dist}_{\operatorname{CH}}(A,B) = \sum_{a \in A} \operatorname{dist}(a,B),$$

where $dist(a, B) = \min_{b \in B} dist(a, b)$ and $dist(a, b) = ||a - b||_p$

Motivation:

- efficient alternative to Earth-Mover Distance (EMD)
 - EMD requires 1 to 1 mapping, while Chamfer distance is relaxed
 - Chamfer distance is easier to compute than EMD
- used for deep-learning loss, 3D reconstruction and medical imaging





EMD

Fully Dynamic Setting

Static setting: $(1 + \epsilon)$ -approximation in $\tilde{O}(nd \cdot \epsilon^{-2})$ time [BIJ+23, FI25] near-linear

Our goal: maintain an approximation to Chamfer distance under dynamic updates

Update operations: insert/delete a point in *A* or *B*

Query: return an approximation to $dist_{CH}(A, B)$

Naïve solution: recompute from scratch after each update, with $\tilde{O}(nd \cdot \epsilon^{-2})$ time

Challenge: no existing method breaks the linear update time barrier with constant approximation (even in 2D)

Our Result

breaks the linear update time barrier

- Low dimension: $(1 + \epsilon)$ -approximation in $\tilde{O}(\epsilon^{-d})$ update time
- **High dimension:** $poly(1/\epsilon)$ -approximation in $\tilde{O}(dn^{\epsilon})$ update time

General Theorem. Assume there is a $(1 + \Theta(\alpha))$ -approximate nearest neighbor (NN) oracle on B with query/update time τ . Then there is a dynamic algorithm,

- update: supports insertion/deletion in A and B in $\tilde{O}(\tau)$ time;
- query: in $\tilde{O}((\tau + d)\epsilon^{-2} \max\{1, \alpha^2\})$ time, returns a $(1 + \alpha + \epsilon)$ -approximation to $\operatorname{dist}_{\operatorname{CH}}(A, B)$.

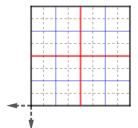
Technique

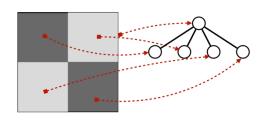
- Recall: $dist_{CH}(A, B) = \sum_{a \in A} dist(a, B)$ a sum of nearest-neighbor distances
- We estimate this sum of distance via importance sampling
 - [BIJ+23] employed importance sampling to estimate Chamfer distance in static setting
- Importance sampling framework
 - Sampler: (1) for each a ∈ A, compute d(a), an O(polylog n)-approximation to dist(a, B)
 (2) take Õ(1) samples S from A with probability proportional to d(a)
 - **Estimator**: let $\widehat{D} = \sum_{a \in A} \widehat{d(a)}$, estimate $\operatorname{dist}_{\operatorname{CH}}(A, B)$ by $\frac{1}{|S|} \sum_{a \in S} \frac{\widehat{D}}{\widehat{d(a)}} \operatorname{dist}(a, B)$
 - Guarantee: yields a $(1 + \epsilon)$ -approximation (w.h.p.)
- We need a dynamic importance sampler and a dynamic estimator

Dynamic Sampler

Idea: use an efficient tree embedding and do sampling on the tree metric

- An efficient realization is a randomly shifted quadtree
 - **Distortion**: $O(\log^2 n)$
 - Update time: $\tilde{O}(d)$





- Recall: for each $a \in A$, we need $\widehat{d(a)}$, an O(polylog n)-approximation to $\operatorname{dist}(a, B)$
- It suffices to use the distance $\operatorname{dist}_T(a,B)$ on the tree as $\widehat{d(a)}$
- Let c_a be the smallest quadtree cell containing a and any point of B, then

$$\operatorname{dist}_T(a,B) = O(c_a)$$
's side length)

 c_a 's side length can be maintained dynamically

Dynamic Estimator

Recall (static estimator):

• $\frac{1}{|S|} \sum_{a \in S} \frac{\widehat{D}}{\widehat{d(a)}} \operatorname{dist}(a, B)$ is a $(1 + \epsilon)$ -approximation to $\operatorname{dist}_{\operatorname{CH}}(A, B)$ (w.h.p.)

Our estimator (dynamic setting):

- $\widehat{d(a)}$ is maintained in the dynamic sampler; it remains to compute dist(a, B)
- approximate dist(a, B) by a $(1 + \Theta(\alpha))$ -approximate NN oracle

Guarantee: the result is a $(1 + \alpha + \epsilon)$ -approximation to $\operatorname{dist}_{\operatorname{CH}}(A, B)$ (w.h.p.)

Experiments

Updates are simulated via a sliding window over *B* (insertions/deletions)

Dataset: we use four real-world datasets; default setting: static A, dynamic B

dimension d|A||B|window size sample size dataset Text Embedding 300 $\sim 1.9 k$ $\sim 1.2k$ 100 150 100 ShapeNet ~2k ~2k 150 **Fashion-MNIST** 500 784 60k 10k 200 **SIFT** 128 1000k 10k 500 300

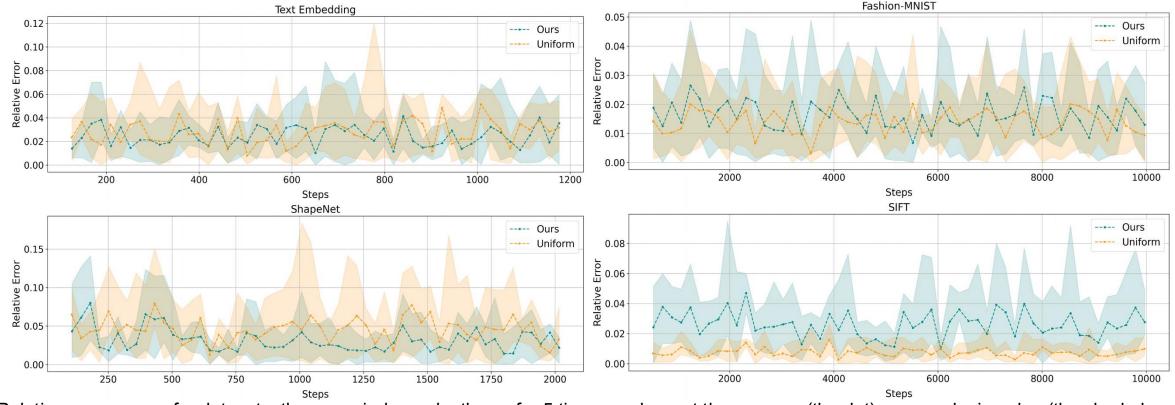
Table 1: Specifications of datasets and experiment parameters.

Baselines:

- **Benchmark** (exact, brute-force) for each update of B, recompute $\operatorname{dist}_{\operatorname{CH}}(A,B)$ in O(d|A|) time, since there are at most |A| points are affected
- Uniform replace our important sampling with a uniform sampling

Relative Error Curves

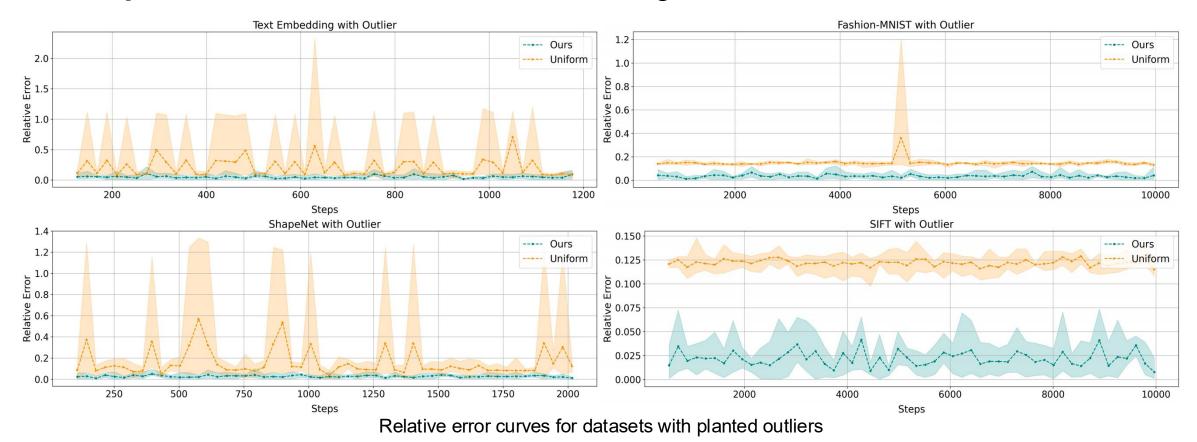
- Compared with Benchmark: ≤10% error with 0.03%-5% points as samples
- Compared with Uniform: comparable error and variance



Relative error curves for datasets; these are independently run for 5 times, and report the average (the dot), max and min value (the shaded area)

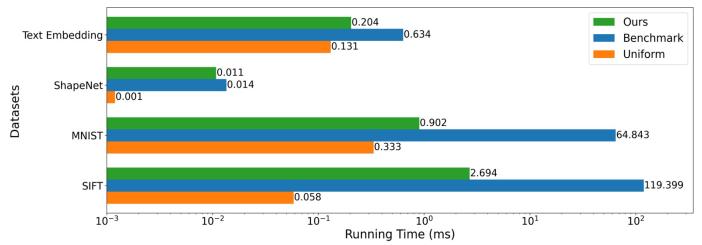
Relative Error Curves: With Planted Outlier

- Compared with Benchmark: still ≤10% error with 0.03%-5% points as samples
- Compared with Uniform: a clear advantage in both error and variance



Running Time

Orders of magnitude faster than Benchmark on large datasets



Average running time per window update for all algorithms on datasets

Thanks!