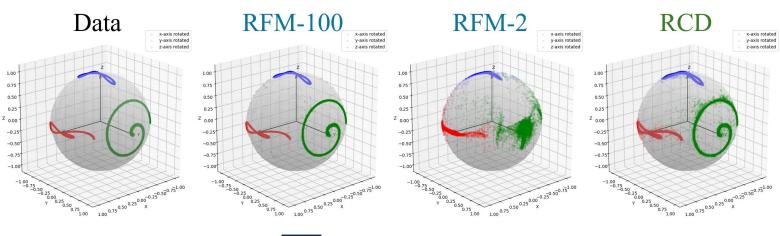
Riemannian Consistency Model

Chaoran Cheng, Yusong Wang, Yuxin Chen, Xiangxin Zhou, Nanning Zheng, Ge Liu

https://github.com/ccr-cheng/riemannian-consistency-model

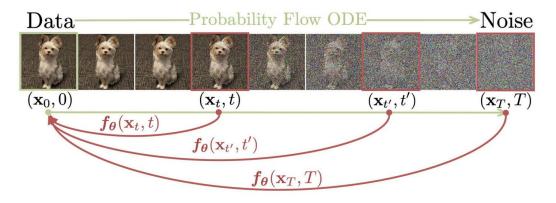
NeurIPS 2025

Presenter: Chaoran Cheng



Background: Consistency Model

• Consistency Model (CM) maps any point (*noisy data*) on the ODE trajectory (*probability flow*) directly to its original (*clean data*).



- Core ideas:
 - On a generation trajectory, the prediction should be consistent!
 - With a consistent prediction, we can shortcut the probability flow for few-step generations.

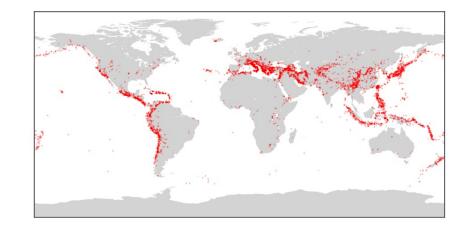
$$\underbrace{f(\mathbf{x}_t, t) = \mathbf{x}_0}_{\int}$$

On any level of noisy data, the prediction remains consistent.

Riemannian Manifolds

- CM Parameterization: $f_{\theta}(\mathbf{x}_t, t) = c_{\text{skip}}(t) \mathbf{x}_t + c_{\text{out}}(t) F_{\theta}(\mathbf{x}_t, t)$
- CM Loss: $\underset{\theta}{\operatorname{arg\,min}} \mathbb{E}\left[w(t_i)d(f_{\theta}(\mathbf{x}_{t_{i+1}},t_{i+1}),f_{\theta^-}(\tilde{\mathbf{x}}_{t_i},t_i))\right]$
- Can we extend to Riemannian manifolds?
 - Geology data on the 2-sphere.
 - Torsion angles in *tori*.
 - Protein orientations in *SO(3)*.

- Euclidean CM parameterization may break the manifold constraint
- Euclidean CM loss is *ill-defined* for Riemannian manifolds

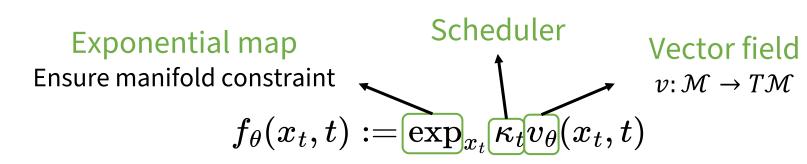


 $T_x \mathcal{M}$

 $f_{ heta}(x_t,t) := \exp_{x_t} \kappa_t v_{ heta}(x_t,t)$

Riemannian Consistency Model

- Our solution: Riemannian Consistency Model (RCM)
 - Ensure *manifold constraints* by design
 - Support both distillation (RCD) as well as training (RCT)
 - Intuitive interpretation from a *kinematics* perspective
- RCM Parameterization:



• RCM Loss:

Riemannian Distance (geodesic distance) $\mathcal{L}^{N}_{\text{RCM}} = N^2 \mathbb{E}_{t,x_t} \left[w_t d_q^2 | (f_\theta(x_t,t), f_{\theta^-}(x_{t+\Delta t}, t+\Delta t)) \right]$

 $T_{ ilde{x}}\mathcal{N}$

Riemannian Consistency Model

Discrete-Time RCM Loss

Continuous-Time RCD Loss

Continuous-Time **RCT** Loss

Continuous-Time
Simplified RCT Loss

$$\mathcal{L}_{\mathrm{RCM}}^{N} = N^{2} \mathbb{E}_{t,x_{t}} \left[w_{t} d_{g}^{2} \left(f_{\theta} \left(x_{t}, t \right), f_{\theta^{-}} \left(x_{t+\Delta t}, t + \Delta t \right) \right) \right]$$

Theorem 3.1

$$\mathcal{L}_{\mathrm{RCM}}^{\infty} := \lim_{N \to \infty} \mathcal{L}_{\mathrm{RCM}}^{N} = \mathbb{E}_{t,x_{t}} \left[w \| \ \mathrm{d}(\exp_{x})_{u} \left(\dot{\kappa} v + \kappa \nabla_{\dot{x}} v \right) + \mathrm{d}(\exp u)_{x} (\dot{x}) \|_{g}^{2} \right]$$

Marginalization
Theorem 3.2

Stop-gradient is necessary for marginalization

$$\mathcal{L}_{ ext{RCM}}^{\infty} := \mathbb{E}_{t,x_t} \left[w \left\langle f_{\theta^-} - f_{\theta} + \dot{f}_{\theta^-}, \dot{f}_{\theta^-}
ight
angle_g
ight], \quad \dot{f} = \mathrm{d}(\exp_x)_u \left(\dot{\kappa} v + \kappa
abla_{\dot{x}} v
ight) + \mathrm{d}(\exp u)_x (\dot{x})$$

Approximation Proposition 3.1

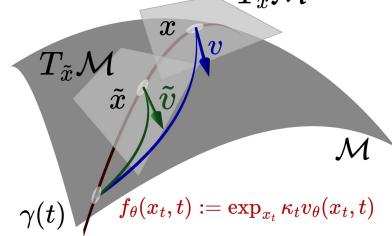
Circumvent the need to compute the differentials of the exponential map

$${\mathcal L}_{\mathrm{sRCM}}^\infty := \mathbb{E}_{t,x_t} \left[w \langle v_{ heta^-} - v_{ heta} + \dot{u}_{ heta^-}, \dot{u}_{ heta^-}
angle_g
ight], \quad \dot{u}_{ heta} := \dot{x} + \dot{\kappa} v_{ heta} + \kappa
abla_{\dot{x}} v_{ heta}$$

Riemannian Consistency Model

- UNIVERSITY OF ILLINOIS
 URBANA-CHAMPAIGN
 - $T_x \mathcal{M}$

- Riemannian Consistency Model (RCM)
 - RCD: distill a pre-trained generative model
 - **RCT**: standalone generative framework



Algorithm 1 Simplified Riemannian Consistency Distillation (sRCD)

- 1: **Input:** Pre-trained RFM s_{ϕ} .
- 2: **while** not converged **do**
- 3: Sample data x_1 , noise x_0 , and t.
- 4: Calculate $x_t = \exp_{x_1}(\kappa_t \log_{x_1}(x_0))$.
- 5: Calculate $s_{\phi}(x_t, t)$.
- 6: Calculate $\dot{u}_{\theta} = s + \dot{\kappa}v_{\theta} + \kappa \nabla_s v_{\theta}$.
- 7: Optimize the loss with $\nabla_{\theta} w \langle v_{\theta^{-}} v_{\theta} + \dot{u}_{\theta^{-}}, \dot{u}_{\theta^{-}} \rangle_{g}$.
- 8: end while

Algorithm 2 Simplified Riemannian Consistency Training (sRCT)

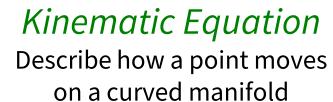
- 1: **Input:** None.
- 2: **while** not converged **do**
- 3: Sample data x_1 , noise x_0 , and t.
- 4: Calculate $x_t = \exp_{x_1}(\kappa_t \log_{x_1}(x_0))$.
- 5: Calculate $\dot{x}_t = \dot{\kappa}_t \log_{x_t} x_1/\kappa_t$.
- 6: Calculate $\dot{u}_{\theta} = \dot{x} + \dot{\kappa} \dot{v}_{\theta} + \kappa \nabla_{\dot{x}} v_{\theta}$.
- : Optimize the loss with $\nabla_{\theta} w \langle v_{\theta^{-}} v_{\theta} + \dot{u}_{\theta^{-}}, \dot{u}_{\theta^{-}} \rangle_{q}$.
- 8: end while

Kinematics Perspective

• Uniform circular motion on the unit sphere S^1 . Although the velocity is *constant* in some sense, the acceleration is *non-zero*. The centripetal acceleration satisfies:

$$\dot{v} + x \|v\|^2 = 0$$

$$\nabla_{\dot{\gamma}}\dot{\gamma}=0$$



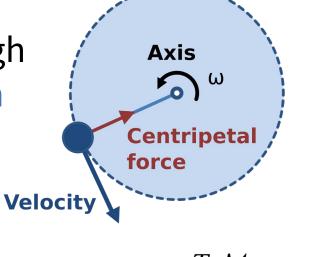
Geodesic Equation

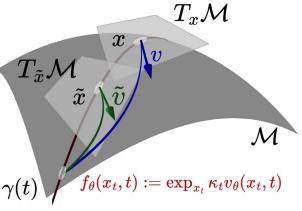
Describe how probability mass transports on a curved manifold

• For non-flat Riemannian manifolds, there exists an extrinsic acceleration due to the manifold constraint!

$$\nabla_u v = \dot{v}^k + \Gamma^k_{ij} v^i u^j$$

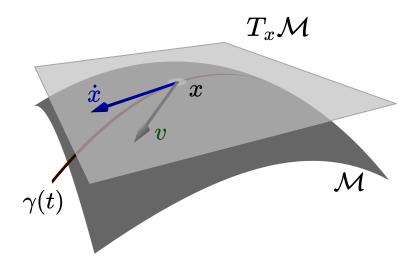
Christoffel symbols that describe the local geometry of the manifold.



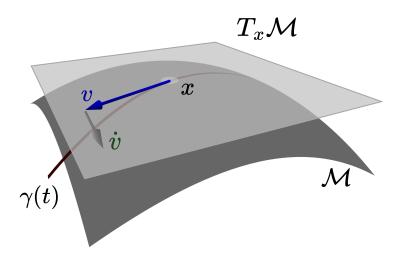


Kinematics Perspective

• The *RCM Loss* can be decomposed into three components:



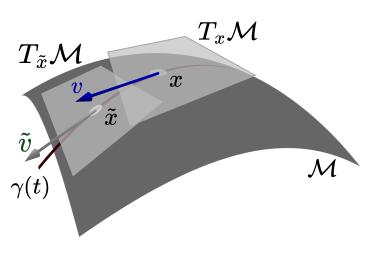
Vector field difference $\dot{x} - v$ The learning error should be small.



Vector field derivative \dot{v}

The vector field should remain constant if the manifold is flat.

Also appear in Euclidean cases



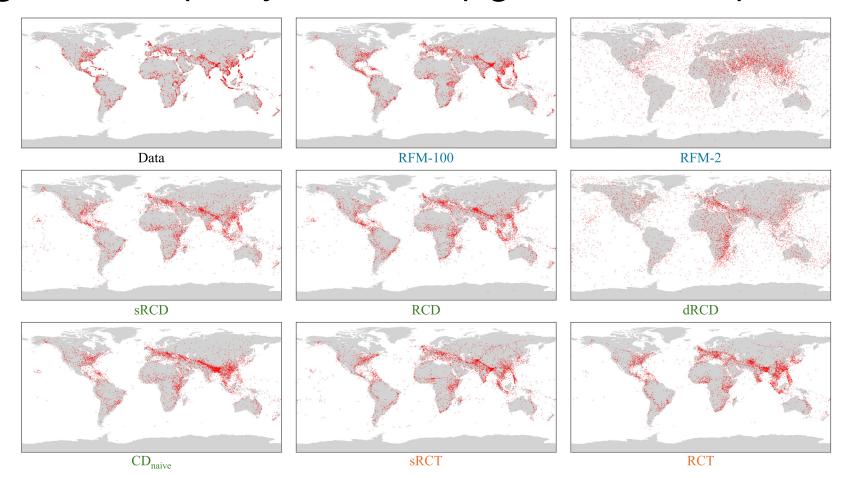
Covariant derivative $\nabla_{\dot{x}} v$

$$\nabla_u v = \dot{v}^k + \Gamma^k_{ij} v^i u^j$$

Exclusive for non-flat Riemannian manifolds!

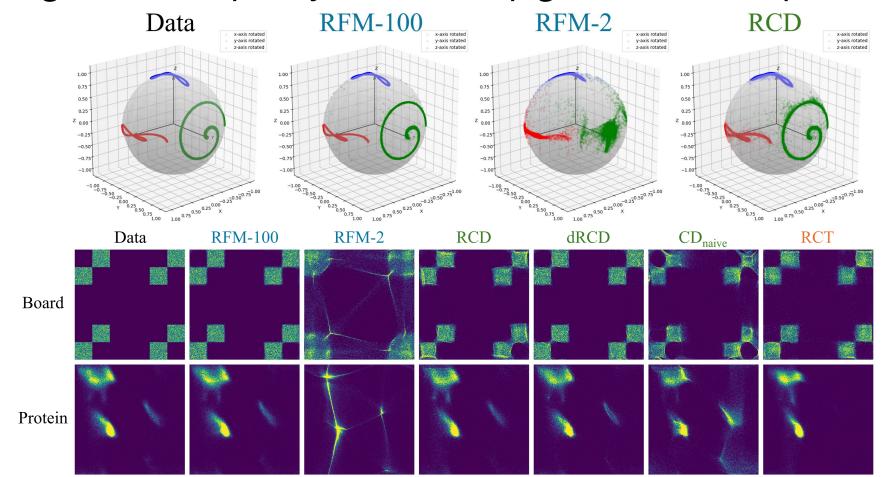
Result

• For both distillation and training, RCM variants consistently achieve better generation quality in the 2-step generation setup.



Result

• For both distillation and training, RCM variants consistently achieve better generation quality in the 2-step generation setup.



Thanks

