NeuSymEA: Neuro-symbolic Entity Alignment via Variational Inference

Background

Entity alignment (EA) Task: to merge two knowledge graphs by identifying equivalent entity pairs.

Existing work: can be categorized into symbolic and neural models. Symbolic models, while precise, struggle with substructure heterogeneity and sparsity, whereas neural models, although effective, generally lack interpretability and cannot handle uncertainty.

Framework - NeuSymEA

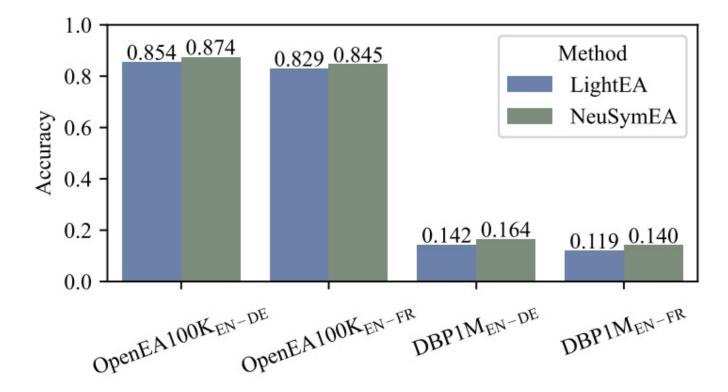
NeuSymEA models the joint probability of all possible pairs' truth scores in a Markov random field, regulated by a set of rules, and optimizes it with the variational EM algorithm

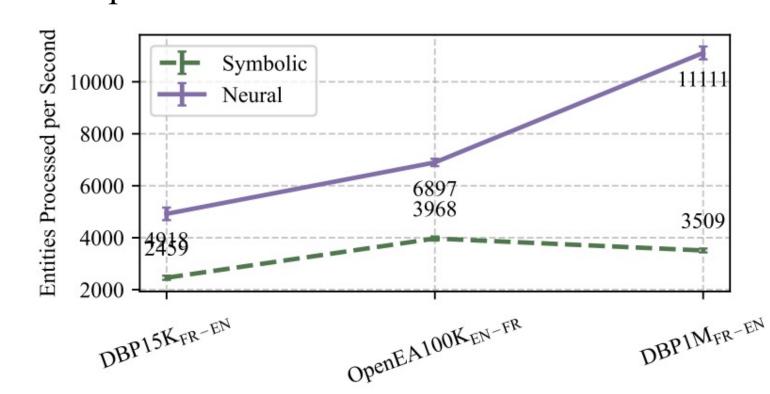
- **E-step**: a neural model parameterizes the truth score distributions and infers missing alignments.
- M-step: the rule weights are updated based on the observed and inferred alignments, handling uncertainty
- Extend to long rules: We introduce an efficient symbolic inference engine driven by logic deduction, enabling reasoning with long rules.

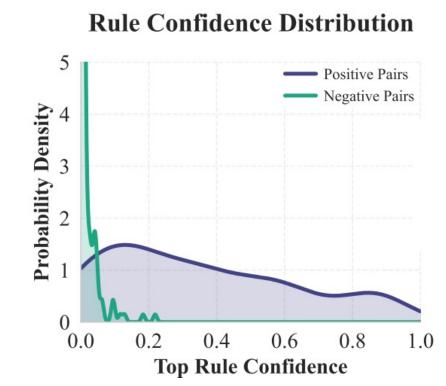
Efficient reasoning with decomposed rule Variational EM Joint probability Rule mining Unit-length rules Long rule Aligned KGs $P_{w}(v_{O}, v_{H}(\theta))$ Source KG Source KG Rule weight $w_{p,p'} \Longrightarrow \bigotimes_{i=1}^L w_{r_i,r_i}$ Parameterization Target KG Target KG E-step: Matching scores Entity embedding θ fix w, update θ M-step: Neural modeling fix θ , update w

Framework illustration of NeuSymEA.

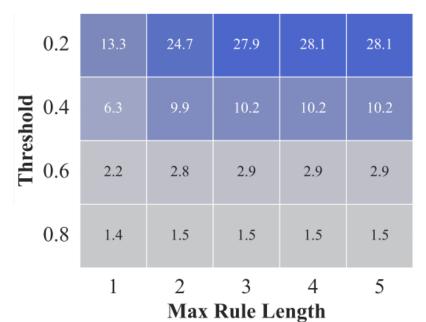
Shengyuan Chen, Zheng Yuan, Qinggang Zhang, Wen Hua, Jiannong Cao, Xiao Huang

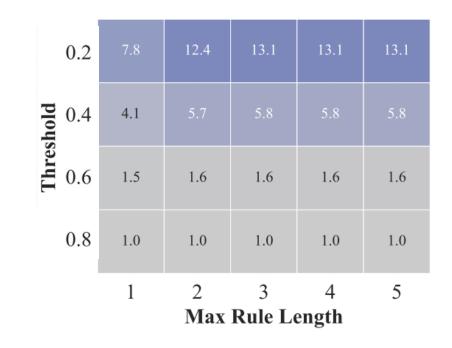





Experimental Results

	×		J /									
Category	Model		JA-EN			FR-EN			ZH-EN			
	Model	Hit@1	Hit@10	MRR	Hit@1	Hit@10	MRR	Hit@1	Hit@10	MRR		
Results on the full DBP15K dataset												
Neural	GCNAlign	0.221	0.461	0.302	0.205	0.475	0.295	0.189	0.438	0.271		
	BootEA	0.454	0.782	0.564	0.443	0.799	0.564	0.486	0.814	0.600		
	AlignE	0.356	0.715	0.476	0.346	0.731	0.475	0.333	0.690	0.453		
	Dual-AMN	0.627	0.883	0.717	0.652	0.908	0.744	0.650	0.884	0.732		
	LightEA	0.736	0.894	0.793	0.782	0.919	0.832	0.725	0.874	0.779		
Symbolic	PARIS	0.589	-	2 — 3	0.618	-		0.603	-	n -		
Neuro-symbolic	PRASE	0.611	°-	-	0.647	-	-	0.652	-	-		
Ours	NeuSymEA-D	0.806	0.942	0.855	0.827	0.952	0.871	0.801	0.925	0.843		
	NeuSymEA-L	<u>0.781</u>	0.907	0.826	0.834	0.937	0.871	<u>0.785</u>	0.894	<u>0.825</u>		


Scalability on large scale KGs. (Left) Hit@1 alignment performance on large KGs. (Right) Persecond processed entities of neural and symbolic components on different scales of KGs.



Hard Anchor Mode

Robustness in low-resource settings, achieving 73.7% hit@1 accuracy on DBP15KFR-EN with only 1% pairs as seed alignments.

Dataset	Model	1%		5%			10%			20%			
2		H@1	H@10	MRR									
JA-EN	AlignE	0.007	0.034	0.016	0.080	0.268	0.143	0.244	0.588	0.356	0.433	0.783	0.552
	BootEA	0.010	0.040	0.021	0.379	0.683	0.481	0.468	0.779	0.573	0.530	0.829	0.631
	GCNAlign	0.029	0.128	0.063	0.127	0.368	0.206	0.209	0.515	0.310	0.331	0.662	0.443
	PARIS	0.145	-	-	0.340	-	-	0.450	-	-	0.565	-	-
	PRASE	0.163	-	-	0.432	-	-	0.508	-	-	0.580	-	-
	Dual-AMN	0.239	0.519	0.334	0.509	0.795	0.611	0.652	0.887	0.738	0.750	0.927	0.815
	RREA	0.253	0.486	0.332	0.558	0.830	0.653	0.672	0.903	0.756	0.789	0.956	0.853
	LightEA	0.291	0.514	0.363	0.627	0.806	0.689	0.714	0.874	0.771	0.778	0.911	0.828
	EMEA	0.411	-	0.488	0.630	-	0.710	0.688	-	0.764	0.736	-	0.807
	PEEA	0.242	0.519	0.333	0.490	0.785	0.589	0.612	0.834	0.679	0.703	0.912	0.777
	NeuSymEA-D	0.481	0.684	0.550	0.692	0.855	0.749	0.742	0.895	0.796	0.835	0.953	0.879
	NeuSymEA-L	0.632	0.779	0.683	0.733	0.870	0.781	0.773	0.900	0.818	0.858	0.954	0.894