

Learning Dense Hand Contact Estimation from Imbalanced Data

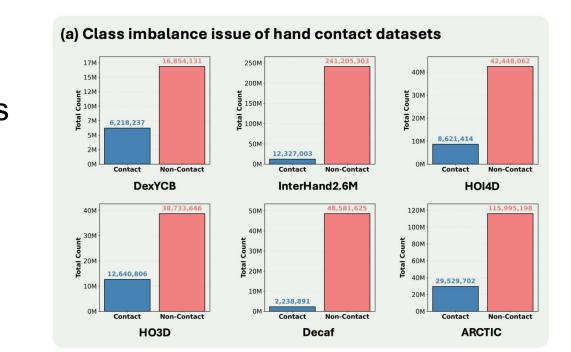
Daniel Sungho Jung¹, Kyoung Mu Lee² ¹IPAI, ² ECE & ASRI, Seoul National University

INTRODUCTION

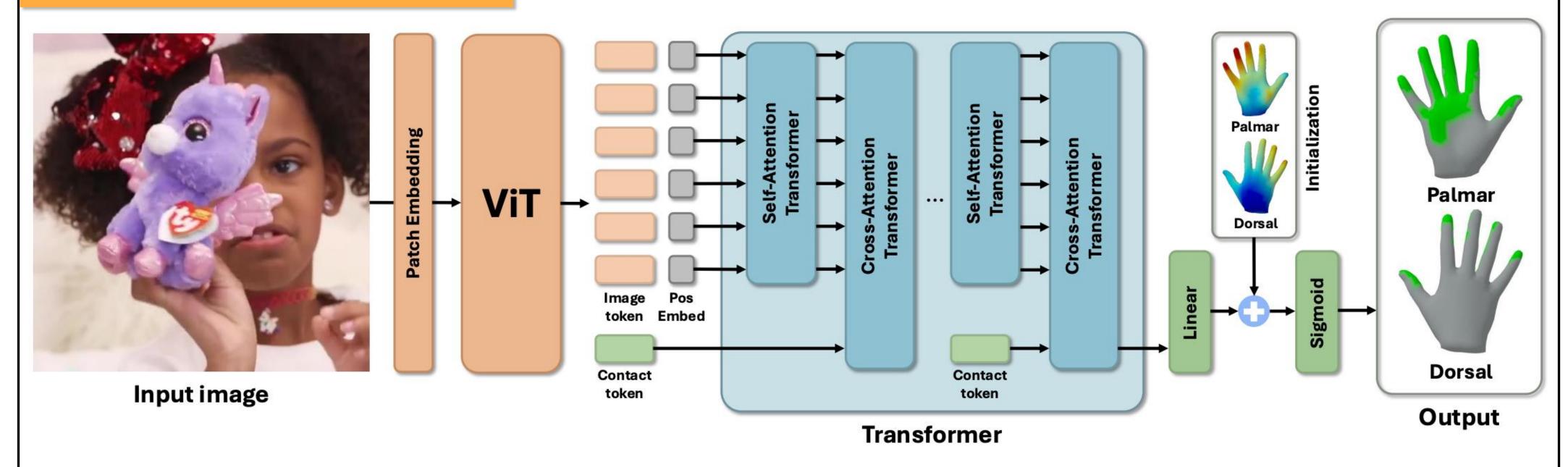
Motivation

- Hands play a central role in human interaction and human manipulation with the physical world.
- No existing method for hand-dedicated contact estimation.
- No existing body contact model achieves reliable accuracy or generalization across diverse hand interactions.
- → Developing a dense hand contact estimation model is essential.

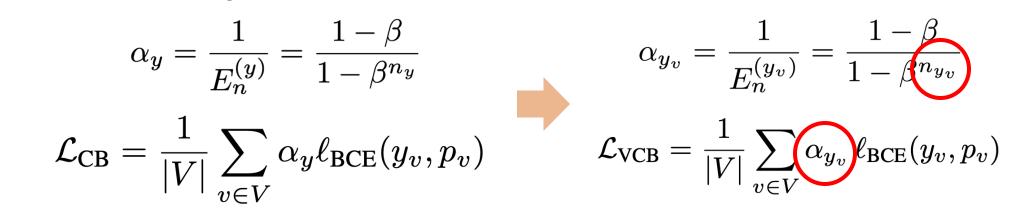
Our Goal


- Estimate vertex-level hand contact on MANO hand model.
- Modeling hand interaction with the world.

Challenges


- All hand datasets have "imbalance" in **spatial location** (e.g., fingertip) of contact.
- **⇒** Spatial imbalance issue.
- → Most of contact concentrated in **fingertip area**.
- **→ Difficult to generalize** on diverse contact patterns.
- All hand datasets have "imbalance" in **class** (contact vs non-contact).
- **→** Class imbalance issue.
- **→ Non-contact vertices** are much more frequent than contact vertices.

PROPOSED METHOD


Overall Pipeline of HACO

- No bells and whistles: Fully Transformer-based architecture trained in an end-to-end manner.
- Contact initialization: Learnable embedding for effective initial contact estimation based on large-scale hand datasets.

Vertex-Level Class-Balanced Loss

- Define the number of occurrence (n_v) of class-balanced (CB) loss for each vertex (v), which defines loss weighting factor (α) .
- Loss weighting factor (α) is separately defined for each vertex (v), allowing flexible loss contribution to each vertex resolving spatial imbalance issue with vertex-level contact learning.

* $y \in \{0, 1\}$ is ground-truth vertex contact. * $E_n^{(y)}$ is the effective number of samples, which is the key component of CB loss. * $\beta \in [0,1)$ is a hyperparameter that controls influence of sample count on

Balanced Contact Sampling

- We build sampling bins $(B = \{B_1, B_2, ..., B_k\})$ from existing hand contact dataset (D) with contact balance score (s_i) for each hand (H_i) .
- Contact balance score (s_i) is defined to measures "whether a sample contains more rarely contacted vertices $(c_i^{\mathsf{T}}(1-c))$ and fewer frequently contacted vertices $(c_i^T \bar{c})$ relative to the dataset average (\bar{c}) , which resolves class imbalance issue.

$$\mathcal{B}_k = \{ \mathbf{H}_i \in \mathbf{D} \mid s_i \in [\tau_{k-1}, \tau_k) \} \qquad s_i = \frac{1}{V} \left(\mathbf{c}_i^{\mathsf{T}} (1 - \bar{\mathbf{c}}) - \mathbf{c} \right)$$

$s_i = \frac{1}{V} \left(\mathbf{c}_i^{\top} (1 - \bar{\mathbf{c}}) - \mathbf{c}_i^{\top} \bar{\mathbf{c}} \right)$

EXPERIMENTS

Ablation Studies

< Effectiveness of Vertex-Level Class-Balanced Loss >

Methods	Precision [†]	Recall [†]	F1-Score	
CE loss	0.530	0.294	0.348	
L1 loss	0.521	0.392	0.413	
L2 loss	0.531	0.298	0.352	
Focal loss [32]	0.518	0.387	0.409	
CB loss [6]	0.484	0.534	0.465	
CB Focal loss [6]	0.522	0.360	0.392	
LDAM loss [3]	0.532	0.224	0.293	
Asymmetric loss [52]	0.484	0.479	0.440	
Poly loss [26]	0.528	0.324	0.371	
VCB loss (Ours)	0.525	0.607	0.522	

- VCB Loss: Separate weighting factor for each vertex based on training data statistics.
- Resolves spatial imbalance issue with vertexlevel contact learning.

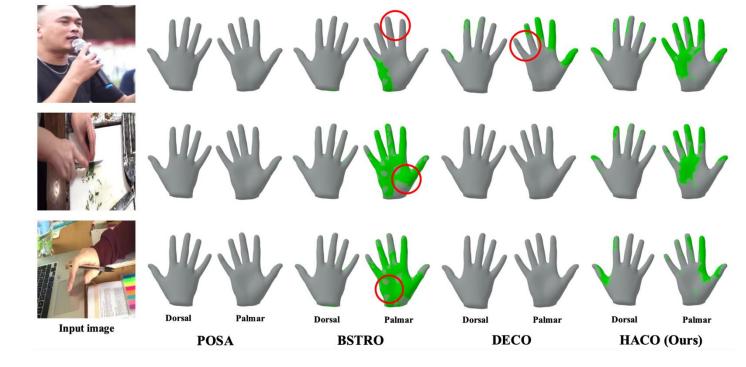
< Effectiveness of Balanced Contact Sampling >

Methods	Precision [†]	Recall [†]	F1-Score
w/o sampling w/ sampling (Ours	0.520	0.542	0.481
	0.525	0.607	0.522

- Higher Recall and F1-score with balanced contact sampling.
- More true positive predictions on contact showing resolved class imbalance issue.

< Effectiveness of Large-Scale Training>

Methods	Precision	Recair	F1-Score
HACO trained on 1 dataset	0.498	0.348	0.373
HACO trained on 3 datasets	$\overline{0.463}$	0.602	0.485
HACO trained on 14 datasets	0.525	0.607	0.522


• Large-scale training consistently improves performance.

Comparison to SOTA

< Dense hand contact estimation comparison with SOTA methods >

Methods	Precision ↑	Recall [†]	F1-Score↑
POSA [18]	0.134	0.128	0.101
BSTRO [22]	0.204	0.126	0.112
DECO [58]	0.246	0.235	0.197
HACO (Ours)	0.525	0.607	0.522

HACO improves precision by 113% recall by 158%, and F1-score by 164% compared to previous SOTA method.


< 3D hand and object reconstruction comparison with SOTA methods >

Methods	PVE↓	PJE↓	$\mathrm{CD}_{\mathrm{ho}}\!\downarrow$	F-5 _{ho} ↑	F-10 _{ho} ↑
EasyHOI [35]	21.254	20.973	8.338	0.120	0.230
HACO (Ours)	21.093	20.845	8.186	0.122	0.231

Replacing existing heuristic-based contact extraction pipeline to HACO leads to accurate 3D hand and object reconstruction.

EasyHOI HACO (Ours)

CONCLUSION

- We propose HACO that addresses class imbalance and spatial imbalance issue, which are two challenges in learning dense hand contact estimation.
- Our HACO is the first method for hand contact trained on large-scale hand contact datasets, offering generalization to diverse hand contact patterns.