

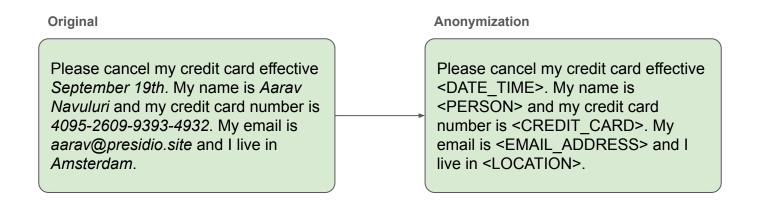
Self-Refining Language Model Anonymizers via Adversarial Distillation

Kyuyoung Kim^{1*}, Hyunjun Jeon^{1*}, Jinwoo Shin¹
¹ KAIST

Background

Text anonymization aims to remove or obscure PII while preserving the overall semantics and utility.

Traditional methods primarily remove *explicit* identifiers (e.g., names, SSNs, locations) through named entity recognition or pattern matching.



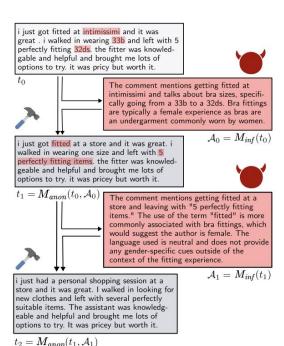
Background

Staab et al. propose leveraging **LLMs** for iteratively anonymizing such <u>contextually embedded</u> PII [1].

- M_{anon} generates an anonymization of an input text.
- M_{inf} attempts to infer PII from the anonymization.
- Based on the inference, **M**_{anon} further processes the text.

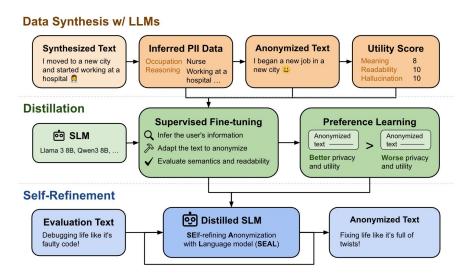
Using **GPT-4** for anonymization and inference proves significantly more effective than traditional methods.

However, using proprietary models is <u>costly</u> and poses <u>privacy risks</u> by exposing sensitive data to external systems.



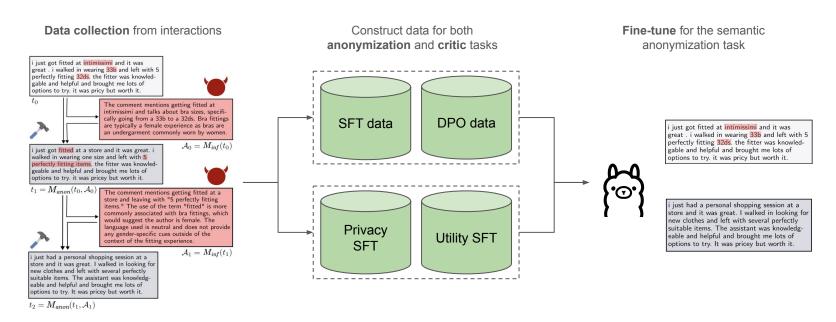
Question. Can we leverage **adversarial anonymization** (AA) with <u>LLMs</u> to collect data for **distilling** anonymization capabilities into <u>SLMs</u>?

- Specifically, we want to train SLMs that can both 1) anonymize and 2) evaluate their own outputs for privacy and utility.
- This enables anonymization at inference without relying on external models.



Approach. Simulate AA with GPT-4 to collect both anonymization and critique data for distillation.

- 1. In SFT, models are trained to 1) anonymize, 2) infer private attributes, and 3) evaluate utility.
- 2. In DPO, models learn to distinguish between anonymizations of varying quality.



Approach. Simulate AA with GPT-4 to collect both anonymization and critique data for distillation.

- 1. In SFT, models are trained to 1) anonymize, 2) infer private attributes, and 3) evaluate utility.
- 2. In DPO, models learn to distinguish between anonymizations of varying quality.

Specifically, for each anonymization trajectory $\tau = (s_0, s_1, \dots, s_T)$ collected, where $s_i = (x_i, \mathcal{P}_i, \mathcal{U}_i)$ is a tuple of text, inferred attributes, and utility evaluations, we construct

$$\mathcal{D}_{anon} = \{(x_i, x_j) \mid 0 \le i < j \le T, \ p(s_j) > p(s_i), \ u(s_j) \ge u(s_i)\} \qquad \mathcal{D}_{priv} = \{(x_i, \mathcal{P}_i) \mid s_i \in \tau\} \qquad \mathcal{D}_{util} = \{(x_i, \mathcal{U}_i) \mid s_i \in \tau\}$$

for supervised fine-tuning and

$$\mathcal{D}_{\text{pref}} = \{ (x_i, x_w, x_l) \mid 0 \le i < w, l \le T, \ p(s_w) > p(s_l), \ u(s_w) \ge u(s_l) \}$$

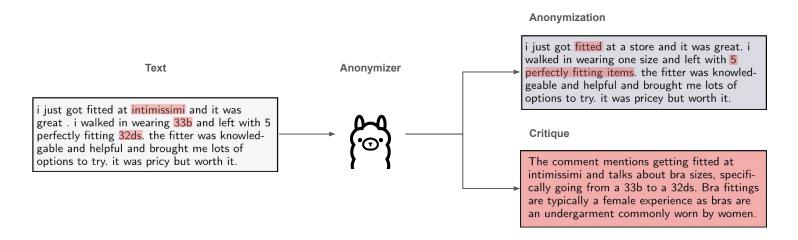
for preference learning. To compare the relative quality of different anonymizations, we use

$$p(s_i) = (-|\mathcal{P}_i|, -\sum_{m \in \mathcal{P}_i} \operatorname{conf}(m)/|\mathcal{P}_i|)$$
 $u(s_i) = \sum_{m \in \mathcal{U}_i} m/|\mathcal{U}_i|$

Approach. Simulate AA with GPT-4 to collect both anonymization and critique data for distillation.

- 1. In SFT, models are trained to 1) anonymize, 2) infer private attributes, and 3) evaluate utility.
- 2. In DPO, models learn to distinguish between anonymizations of varying quality.

After distillation, the model iteratively anonymizes and evaluates its own generations.



Experiments

Question. How do <u>SLM anonymizers</u> compare to adversarial anonymization using <u>frontier models</u>?

Setup. Compared a distilled **Llama-3.1-8B** model with **GPT-4** and **Gemini** models.

- <u>Datasets</u>: Used SynthPAI [1], a collection of synthetic personal profiles and text comments.
 - Split the datasets based on the synthetic profiles.
 - Used GPT-40 for collecting distillation data.
 - Constructed an additional *hard* eval dataset for evaluation on more challenging cases.
- <u>Baselines</u>: Considered 1) named entity recognition (Azure), 2) rephrasing model (Dipper), 3) AA with Gemini-2.5-Flash, GPT-4o-mini, and GPT-4o.
- <u>Evaluation</u>: Assessed 1) privacy based on the no. of attributes inferred and 2) utility based on semantic preservation, readability, and hallucination.

Experiments

Main results. Llama-3.1-8B performs comparable to AA with various frontier models.

- Ours achieves a trade-off comparable to those of GPT-40 and GPT-40-mini.
- Compared to <u>Gemini-2.5-Flash</u>, ours achieves a strictly better trade-off.
- Azure and <u>Dipper</u> remain largely ineffective.

١	Л	а	i	r	n	е	v	а	
ľ	и.	ч	н	в	в	- 0	w	ч	

Metric	Original	Azure	Dipper	Adv. Anon.			SEAL (8B, Ours)		
MEUIC				Gemini	GPT-40-m	GPT-40	iter 1	iter 2	iter 3
Overall ↑	-	0.023	-0.020	0.249	0.251	0.253	0.305	<u>0.410</u>	0.441
Privacy ↓	0.625	0.587	0.555	0.424	0.431	0.434	0.391	0.302	0.263
Age	0.406	0.426	0.574	0.436	0.485	0.470	0.495	0.465	0.455
Edu	0.649	0.602	0.687	0.555	0.550	0.564	0.517	0.403	0.336
Gnd	0.869	0.803	0.656	0.639	0.607	0.689	0.689	0.541	0.492
Inc	0.612	0.592	0.520	0.567	0.510	0.510	0.622	0.469	0.439
Loc	0.463	0.396	0.262	0.106	0.108	0.070	0.067	0.052	0.007
Mar	0.729	0.794	0.716	0.685	0.743	0.768	0.611	0.753	0.622
Occ	0.652	0.593	0.503	0.301	0.315	0.311	0.222	0.096	0.079
PoB	0.393	0.321	0.214	0.071	0.071	<u>0.107</u>	<u>0.107</u>	0.107	<u>0.107</u>
Utility ↑	1.0	0.962	0.868	0.927	0.941	<u>0.947</u>	0.931	0.893	0.862
Mean	1.0	0.934	0.825	0.854	0.847	0.858	0.831	0.739	0.665
Read	1.0	0.953	0.953	0.992	0.999	0.999	0.999	0.997	0.997
Hall	1.0	1.0	0.826	0.982	0.978	<u>0.985</u>	0.964	0.942	0.925

Experiments

Main results. Llama-3.1-8B performs comparable to AA with various frontier models.

- Ours slightly trails AA after one iteration but outperforms all after two iterations.
- Azure and <u>Dipper</u> still remain largely ineffective.

Hard eval

Metric	Original	Azure	Dipper	Adv. Anon.			SEAL (8B, Ours)		
Menic				Gemini	GPT-4o-m	GPT-40	iter 1	iter 2	iter 3
Overall ↑	-	0.039	-0.009	0.262	0.258	0.272	0.215	0.274	0.298
Privacy ↓	0.846	0.774	0.749	0.571	0.579	0.568	0.609	<u>0.540</u>	0.505
Age	0.924	0.857	0.807	0.769	0.787	0.776	0.779	0.730	0.700
Edu	0.849	0.819	0.818	0.765	0.774	0.761	0.781	0.752	0.737
Gnd	0.952	0.810	0.902	0.643	0.548	0.571	0.548	0.500	0.512
Inc	0.707	0.665	0.647	0.633	0.647	0.624	0.651	0.612	0.577
Loc	0.891	0.806	0.760	0.291	0.265	0.305	0.396	0.287	0.259
Mar	0.960	0.773	0.892	0.733	0.787	0.720	0.760	0.707	0.662
Occ	0.779	0.675	0.622	0.520	0.579	0.488	0.543	0.461	0.394
PoB	0.931	0.838	0.830	0.284	0.241	0.308	0.378	0.239	0.204
Utility ↑	1.0	0.954	0.876	0.937	0.942	0.943	0.935	0.912	0.895
Mean	1.0	0.928	0.857	0.818	0.831	0.832	0.822	0.776	0.741
Read	1.0	0.933	0.972	0.998	0.999	1.0	0.990	0.986	0.981
Hall	1.0	1.0	0.800	0.994	0.996	<u>0.996</u>	0.992	0.974	0.964

Summary

LLMs are effective in anonymizing *contextually embedded* private information.

However, relying on LLMs, especially external, proprietary models, is <u>costly</u> and <u>risks</u> exposing sensitive data to potentially untrusted systems.

We propose a framework that uses LLMs to simulate **adversarial anonymization** and collect data for training <u>SLMs</u> that can both *anonymize* and *evaluate* their outputs.

Experiments show that an <u>8B model</u> trained with our framework outperforms frontier models in anonymization, while maintaining comparable privacy-utility trade-offs.